Overall Statistics |
Total Trades 708 Average Win 2.23% Average Loss -0.73% Compounding Annual Return 33.182% Drawdown 15.900% Expectancy 2.225 Net Profit 5555.408% Sharpe Ratio 1.78 Probabilistic Sharpe Ratio 99.755% Loss Rate 21% Win Rate 79% Profit-Loss Ratio 3.06 Alpha 0.21 Beta 0.22 Annual Standard Deviation 0.129 Annual Variance 0.017 Information Ratio 0.802 Tracking Error 0.179 Treynor Ratio 1.041 Total Fees $1756.06 Estimated Strategy Capacity $710000.00 Lowest Capacity Asset TLH TP8J6Z7L419H |
################################################################################ # KalmanFilterIndicator # # Core logic from @vladimir's KalmanFilter implementation: # https://www.quantconnect.com/forum/discussion/12741/kalman-filter-for-bitcoin/p1 # ################################################################################ from pykalman import KalmanFilter class KalmanFilterIndicator(PythonIndicator): def __init__(self,name, period, selector=Field.Low, transition_matrices = [1], observation_matrices = [1], initial_state_mean = 0, initial_state_covariance = 1, observation_covariance=1, transition_covariance=.01): self.Name = name self.period = period self.Value = 0 self.barCalc = selector self.transition_matrices = transition_matrices self.observation_matrices = observation_matrices self.initial_state_mean = initial_state_mean self.initial_state_covariance = initial_state_covariance self.observation_covariance = observation_covariance self.transition_covariance = transition_covariance self.rollingWindow = RollingWindow[float](self.period) # --------------------------------- def Update(self, inputBar): effectiveBarValue = self.barCalc(inputBar) self.rollingWindow.Add(effectiveBarValue) if(not self.rollingWindow.IsReady): return False else: basisValue = np.flipud(np.array([self.rollingWindow[i] for i in range(self.period)])) self.kf = KalmanFilter( transition_matrices = self.transition_matrices, observation_matrices = self.observation_matrices, initial_state_mean = self.initial_state_mean, initial_state_covariance = self.initial_state_covariance, observation_covariance = self.observation_covariance, transition_covariance = self.transition_covariance) kf,_ = self.kf.filter(basisValue) currKalman = kf[-1] self.Value = float(currKalman) return True ################################################################################ # # LaguerreFilterIndicator # ============================== # Laguerre Filter as defined by John F. Ehlers in `Cybernetic Analysis for # Stock and Futures`, 2004, published by Wiley. `ISBN: 978-0-471-46307-8 # https://www.mt5users.com/wp-content/uploads/2020/01/timewarp.pdf # # Copied from @vladimir's implementation # https://www.quantconnect.com/forum/discussion/11788/another-digital-filter-laguerre-filter/p1/comment-34897 # ################################################################################ class LaguerreFilterIndicator(PythonIndicator): def __init__(self, name, gamma ): self.Name = name self.gamma = gamma self.prices = np.array([]) self.Value = 0 self.L0 = 0.0; self.L1 = 0.0; self.L2 = 0.0; self.L3 = 0.0 def Update(self, input): mp = (input.High + input.Low)/2 self.prices = np.append(self.prices, mp)[-4:] if len(self.prices) <= 1: self.L0 = mp; self.L1 = mp; self.L2 = mp; self.L3 = mp; if len(self.prices) != 4 : return L01 = self.L0; L11 = self.L1; L21 = self.L2; L31 = self.L3; g = self.gamma self.L0 = (1 - g)*mp + g*L01 self.L1 = L01 - g*self.L0 + g*L11 self.L2 = L11 - g*self.L1 + g*L21 self.L3 = L21 - g*self.L2 + g*L31 if len(self.prices) != 4 : self.Value = mp return False self.Value = (self.L0 + (2*self.L1) + 2*(self.L2) + self.L3) / 6 return True
################################################### # # Smart Rolling window # ======================== # Convenience object to build on RollingWindow functionality # # Methods: # ------------------------- # mySmartWindow.IsRising() # mySmartWindow.IsFalling() # mySmartWindow.crossedAboveValue(value) # mySmartWindow.crossedBelowValue(value) # mySmartWindow.crossedAbove(otherWindow) # mySmartWindow.crossedBelow(otherWindow) # mySmartWindow.IsFlat(decimalPrecision) # mySmartWindow.hasAtLeastThisMany(value) # ################################################### class SmartRollingWindow(): def __init__(self, windowType, windowLength): self.window = None self.winLength = windowLength if (windowType is "int"):self.window = RollingWindow[int](windowLength) elif (windowType is "bool"):self.window = RollingWindow[bool](windowLength) elif (windowType is "float"):self.window = RollingWindow[float](windowLength) elif (windowType is "TradeBar"):self.window = RollingWindow[TradeBar](windowLength) def crossedAboveValue(self, value): return (self.window[1] <= value < self.window[0]) def crossedBelowValue(self, value): return (self.window[1] >= value > self.window[0]) def crossedAbove(self, series): return (any(self.window[i+1] <= series[i+1] and self.window[i] > series[i] for i in range(0, self.winLength-1))) def crossedBelow(self, series): return (any(self.window[i+1] >= series[i+1] and self.window[i] < series[i] for i in range(0, self.winLength-1))) def isAbove(self, series): return (self.window[0] > series[0]) def isBelow(self, series): return (self.window[0] < series[0]) def isFlat(self): return (self.window[1] == self.window[0]) def isFalling(self): return (self.window[1] > self.window[0]) def isRising(self): return (self.window[1] < self.window[0]) def Add(self,value): self.window.Add(value) def IsReady(self): return (self.window is not None) and \ (self.window.Count >= self.winLength) ## TODO: just use rw.IsReady? def __getitem__(self, index): return self.window[index]
from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import tweepy, statistics from datetime import datetime, timedelta, date import numpy as np from scipy import stats from AlgorithmImports import * from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.tree import ExtraTreeRegressor, ExtraTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error from sklearn import preprocessing from helpers import myTrailingStopRiskManagementModel class DualMomentumWithOutDaysAlphaModel(AlphaModel): def __init__(self, algorithm, VOLA = 126, BASE_RET = 83, resolution = Resolution.Daily, *args, **kwargs): super().__init__() self.VOLA = VOLA self.BASE_RET = BASE_RET self.resolution = Resolution.Daily # resolution self.MKT = algorithm.AddEquity('SPY', resolution).Symbol self.SLV = algorithm.AddEquity('SLV', resolution).Symbol self.GLD = algorithm.AddEquity('GLD', resolution).Symbol self.XLI = algorithm.AddEquity('XLI', resolution).Symbol self.XLU = algorithm.AddEquity('XLU', resolution).Symbol self.DBB = algorithm.AddEquity('DBB', resolution).Symbol self.UUP = algorithm.AddEquity('UUP', resolution).Symbol self.count = self.BASE_RET self.outday = 5 pairs = [self.MKT, self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP] for symbol in pairs: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = np.log(algorithm.History(pairs, self.VOLA + 1, self.resolution)) #self.history = self.history['close'].unstack(level=0).dropna() self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), 1) resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = f"{self.__class__.__name__}({resolutionString})" # Force alpha to only produce insights Daily at 11.10am self.set_flag = False algorithm.Schedule.On(algorithm.DateRules.EveryDay(), algorithm.TimeRules.AfterMarketOpen('SPY', 100), self.SetFlag) def SetFlag(self): self.set_flag = True def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(self.VOLA + 1):] def Update(self, algorithm, _data): if algorithm.IsWarmingUp or not self.set_flag: return [] self.set_flag = False insights = [] # Volatility vola = self.history[self.MKT].pct_change().std() * np.sqrt(252) wait_days = int(vola * self.BASE_RET) period = int((1.0 - vola) * self.BASE_RET) r = self.history.pct_change(period).iloc[-1] exit_market = r[self.SLV] < r[self.GLD] and r[self.XLI] < r[self.XLU] and r[self.DBB] < r[self.UUP] # # ML Model # pairs = [self.MKT, self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP] # data = self.history # data['vola'] = data[self.MKT].pct_change().rolling(246).std() * np.sqrt(252) # data['wait_days'] = data['vola'].map(lambda x: int(int(x)*self.BASE_RET), na_action='ignore') # data['period'] = data['vola'].map(lambda x: int((1.0 - int(x)) * self.BASE_RET), na_action='ignore') # market_signals = list() # for i in range(0, len(data['period'])): # if 'na' not in str(data['period'][i]): # count = int(i) # period = int(data['period'][i]) # r = data[count:count+246].pct_change(period).iloc[-1] # exit_market = (r[self.SLV] < r[self.GLD] and r[self.XLI] < r[self.XLU] and r[self.DBB] < r[self.UUP]) # market_signals.append(exit_market) # else: # market_signals.append('na') # data['market_signals'] = market_signals # del market_signals # data['Market_Change'] = data[self.MKT].pct_change() # # # Load LabelEncoder to process string variables # le = preprocessing.LabelEncoder() # ml_data = data.dropna() # pairs = [self.MKT, self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP, 'vola', 'wait_days', 'period', 'Market_Change'] # X = ml_data.drop(['market_signals'], axis=1) # y = np.ravel(ml_data[['market_signals']].astype(str).apply(le.fit_transform)) # #algorithm.Debug(str(X.shape) + ";" + str(y.shape)) # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # model = ExtraTreeClassifier(max_depth = 40, # max_features = 'sqrt', # criterion = 'gini', # class_weight = 'balanced', # random_state = 42) # model.fit(X_train, y_train) # y_pred = model.predict(X_test) # algorithm.Plot("Model Score", "Score", model.score(X_test, y_test)) # algorithm.Plot("MAE:", "Mae", mean_absolute_error(y_test, y_pred)) # algorithm.Plot("Coef of Determination:", "r-squared", r2_score(y_test, y_pred)) # algorithm.Plot("Actual vs Pred", "Actual", r2_score(y_test, y_pred)) # clf_results = metrics.precision_recall_fscore_support(y_test, y_pred) # algorithm.Plot("Confusion_Matrix", "Precision", clf_results[0].round(2)) # algorithm.Plot("Confusion_Matrix", "Recall", clf_results[1].round(2)) # algorithm.Plot("Confusion_Matrix", "f1-score", clf_results[2].round(2)) # algorithm.Plot("Confusion_Matrix", "Support", clf_results[3].round(2)) # signal_actual = np.log(self.history[self.MKT]).iloc[-1] # signal_pred = model.predict(np.ravel(np.log(self.history[pairs]).iloc[-1]).reshape(1, -1)) # prev = np.log(self.history[self.MKT]).iloc[-2] # signal_actual = 1 if signal_actual > prev else -1 # signal_pred = 1 if signal_pred > prev else -1 # agreement= 1 if signal_actual == signal_pred else -1 # algorithm.Plot("Actual vs Pred", "Actual", float(signal_actual)) # algorithm.Plot("Actual vs Pred", "Pred", float(signal_pred)) # algorithm.Plot("Actual vs Pred", "Agreement", float(agreement)) direction = InsightDirection.Down if (exit_market): #algorithm.Plot("In vs Out", "Market", -1) direction = InsightDirection.Down self.outday = self.count elif (self.count >= wait_days + self.outday): #algorithm.Plot("In vs Out", "Market", 1) direction = InsightDirection.Up else: direciton = InsightDirection.Flat self.count += 1 # algorithm.Plot("Wait Days", "Actual", self.count) # algorithm.Plot("Wait Days", "Expected", float(wait_days + self.outday)) # algorithm.Plot("Market Volatility", str(self.MKT), float(vola)) # if direction == InsightDirection.Down: # val = -1.0 # elif direction == InsightDirection.Up: # val = 1.0 # else: # val = 0.0 # algorithm.Plot("IN vs Out", "Before", float(val)) insights.append(Insight.Price(self.MKT, self.predictionInterval, direction)) return insights def returns_custom(self, symbol, timeframe, algorithm): frames = [i for i in range(-1, -11, -2)] prices = algorithm.History(symbol, TimeSpan.FromDays(timeframe), self.resolution).close.pct_change() return round(statistics.median([round(float(prices[i] - min(prices[i-9:i])/ min(prices[i-9:i])), 4) if min(prices[i-9:i]) != 0 else 0 for i in frames]), 4)
import pandas as pd import numpy as np from scipy.optimize import minimize class myTrailingStopRiskManagementModel: ''' Credit goes to: Alex Catarino and many of his friends at QuantConnect https://github.com/QuantConnect/Lean/blob/master/Algorithm.Framework/Risk/TrailingStopRiskManagementModel.py Description: Limits the maximum possible loss measured from the highest unrealized profit ''' def __init__(self, maximumDrawdownPercent = 0.08): '''initializes the class Args: maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with the highest unrealized profit, defaults to 5% drawdown ''' self.maximumDrawdownPercent = -abs(maximumDrawdownPercent) self.trailingHighs = dict() def setDD(self, maximumDrawdownPercent = 0.08): '''allows to change the drawdown Args: maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with the highest unrealized profit, defaults to 5% drawdown ''' self.maximumDrawdownPercent = -abs(maximumDrawdownPercent) def setWTtoZeroIfDDtooHigh(self, algorithm, targets=None): '''If drawdown is too high, set wt[symbol] to zero algo.wt[symbol] = weights which will be set to 0 in case drawdown exceeds the maximum ''' for kvp in algorithm.Securities: symbol = kvp.Key security = kvp.Value # Remove from trailingHighs dict if not invested if not security.Invested: self.trailingHighs.pop(symbol, None) continue # Add newly invested securities to trailingHighs dict if symbol not in self.trailingHighs: self.trailingHighs[symbol] = security.Holdings.AveragePrice continue # Check for new highs and update trailingHighs dict if self.trailingHighs[symbol] < security.High: self.trailingHighs[symbol] = security.High continue # Calc the drawdown securityHigh = self.trailingHighs[symbol] drawdown = (security.Low / securityHigh) - 1 # If drawdown is too high, set symbol weight to zero if drawdown < self.maximumDrawdownPercent: algorithm.wt[symbol] = 0 return class myPortfolioOptimizer: ''' Credit goes to: Emilio Freire / InnoQuantivity https://innoquantivity.com/blogs/inno-blog/portfolio-optimization-quantconnect-research-algorithm https://www.quantconnect.com/forum/discussion/8128/portfolio-optimization-research-amp-algorithm-for-better-workflows/p1/comment-22952 Description: Implementation of a custom optimizer that calculates the weights for each asset to optimize a given objective function Details: Optimization can be: - Equal Weighting - Maximize Portfolio Return - Minimize Portfolio Standard Deviation - Mean-Variance (minimize Standard Deviation given a target return) - Maximize Portfolio Sharpe Ratio - Maximize Portfolio Sortino Ratio - Risk Parity Portfolio Constraints: - Weights must be between some given boundaries - Weights must sum to 1 ''' def __init__(self, minWeight = 0, maxWeight = 1): ''' Description: Initialize the CustomPortfolioOptimizer Args: minWeight(float): The lower bound on portfolio weights maxWeight(float): The upper bound on portfolio weights ''' self.minWeight = minWeight self.maxWeight = maxWeight def CalcWeights(self, algorithm, symbols, objectiveFunction='riskParity', lookback=63, targetReturn=None): ''' Description: Calculate weights from daily returns, return a pandas Series ''' history = np.log10(algorithm.History(symbols, lookback, Resolution.Daily)['close'].unstack(level = 0)) returnsDf = history.pct_change().dropna() returnsDf.columns = [algorithm.AddEquity(i).Symbol.Value for i in list(returnsDf.columns)] weights = self.Optimize(objectiveFunction, returnsDf, targetReturn) return pd.Series(weights, index=returnsDf.columns, name='weights') def Optimize(self, objFunction, dailyReturnsDf, targetReturn = None): ''' Description: Perform portfolio optimization given a series of returns Args: objFunction: The objective function to optimize (equalWeighting, maxReturn, minVariance, meanVariance, maxSharpe, maxSortino, riskParity) dailyReturnsDf: DataFrame of historical daily arithmetic returns Returns: Array of double with the portfolio weights (size: K x 1) ''' # initial weights: equally weighted size = dailyReturnsDf.columns.size # K x 1 self.initWeights = np.array(size * [1. / size]) # get sample covariance matrix covariance = dailyReturnsDf.cov() # get the sample covariance matrix of only negative returns for sortino ratio negativeReturnsDf = dailyReturnsDf[dailyReturnsDf < 0] covarianceNegativeReturns = negativeReturnsDf.cov() if objFunction == 'equalWeighting': return self.initWeights bounds = tuple((self.minWeight, self.maxWeight) for x in range(size)) constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}] if objFunction == 'meanVariance': # if no target return is provided, use the resulting from equal weighting if targetReturn is None: targetReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, self.initWeights) constraints.append( {'type': 'eq', 'fun': lambda weights: self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights) - targetReturn} ) opt = minimize(lambda weights: self.ObjectiveFunction(objFunction, dailyReturnsDf, covariance, covarianceNegativeReturns, weights), x0 = self.initWeights, bounds = bounds, constraints = constraints, method = 'SLSQP') return opt['x'] def ObjectiveFunction(self, objFunction, dailyReturnsDf, covariance, covarianceNegativeReturns, weights): ''' Description: Compute the objective function Args: objFunction: The objective function to optimize (equalWeighting, maxReturn, minVariance, meanVariance, maxSharpe, maxSortino, riskParity) dailyReturnsDf: DataFrame of historical daily returns covariance: Sample covariance covarianceNegativeReturns: Sample covariance matrix of only negative returns weights: Portfolio weights ''' if objFunction == 'maxReturn': f = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights) return -f # convert to negative to be minimized elif objFunction == 'minVariance': f = self.CalculateAnnualizedPortfolioStd(covariance, weights) return f elif objFunction == 'meanVariance': f = self.CalculateAnnualizedPortfolioStd(covariance, weights) return f elif objFunction == 'maxSharpe': f = self.CalculateAnnualizedPortfolioSharpeRatio(dailyReturnsDf, covariance, weights) return -f # convert to negative to be minimized elif objFunction == 'maxSortino': f = self.CalculateAnnualizedPortfolioSortinoRatio(dailyReturnsDf, covarianceNegativeReturns, weights) return -f # convert to negative to be minimized elif objFunction == 'riskParity': f = self.CalculateRiskParityFunction(covariance, weights) return f else: raise ValueError(f'PortfolioOptimizer.ObjectiveFunction: objFunction input has to be one of equalWeighting,' + ' maxReturn, minVariance, meanVariance, maxSharpe, maxSortino or riskParity') def CalculateAnnualizedPortfolioReturn(self, dailyReturnsDf, weights): annualizedPortfolioReturns = np.sum( ((1 + dailyReturnsDf.mean())**252 - 1) * weights ) return annualizedPortfolioReturns def CalculateAnnualizedPortfolioStd(self, covariance, weights): annualizedPortfolioStd = np.sqrt( np.dot(weights.T, np.dot(covariance * 252, weights)) ) if annualizedPortfolioStd == 0: raise ValueError(f'PortfolioOptimizer.CalculateAnnualizedPortfolioStd: annualizedPortfolioStd cannot be zero. Weights: {weights}') return annualizedPortfolioStd def CalculateAnnualizedPortfolioNegativeStd(self, covarianceNegativeReturns, weights): annualizedPortfolioNegativeStd = np.sqrt( np.dot(weights.T, np.dot(covarianceNegativeReturns * 252, weights)) ) if annualizedPortfolioNegativeStd == 0: raise ValueError(f'PortfolioOptimizer.CalculateAnnualizedPortfolioNegativeStd: annualizedPortfolioNegativeStd cannot be zero. Weights: {weights}') return annualizedPortfolioNegativeStd def CalculateAnnualizedPortfolioSharpeRatio(self, dailyReturnsDf, covariance, weights): annualizedPortfolioReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights) annualizedPortfolioStd = self.CalculateAnnualizedPortfolioStd(covariance, weights) annualizedPortfolioSharpeRatio = annualizedPortfolioReturn / annualizedPortfolioStd return annualizedPortfolioSharpeRatio def CalculateAnnualizedPortfolioSortinoRatio(self, dailyReturnsDf, covarianceNegativeReturns, weights): annualizedPortfolioReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights) annualizedPortfolioNegativeStd = self.CalculateAnnualizedPortfolioNegativeStd(covarianceNegativeReturns, weights) annualizedPortfolioSortinoRatio = annualizedPortfolioReturn / annualizedPortfolioNegativeStd return annualizedPortfolioSortinoRatio def CalculateRiskParityFunction(self, covariance, weights): ''' Spinu formulation for risk parity portfolio ''' assetsRiskBudget = self.initWeights portfolioVolatility = self.CalculateAnnualizedPortfolioStd(covariance, weights) x = weights / portfolioVolatility riskParity = (np.dot(x.T, np.dot(covariance, x)) / 2) - np.dot(assetsRiskBudget.T, np.log(x)) return riskParity
from itertools import groupby import tweepy from datetime import datetime, timedelta, date import time import pandas as pd import numpy as np import re, math import scipy from math import ceil from collections import deque from itertools import chain from pytz import timezone import statistics from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Data.Market import TradeBar from QuantConnect.Algorithm.Framework.Execution import StandardDeviationExecutionModel, VolumeWeightedAveragePriceExecutionModel from QuantConnect.Algorithm.Framework.Risk import MaximumDrawdownPercentPortfolio, MaximumUnrealizedProfitPercentPerSecurity, MaximumDrawdownPercentPerSecurity, TrailingStopRiskManagementModel from dual_momentum_with_out_days_alpha import DualMomentumWithOutDaysAlphaModel from portfolio_management import PortfolioManagementModel from trade_execution import ScheduledExecutionModel from manage_risk import CustomRiskModel VOLA = 126; BASE_RET = 83; RET = 252; EXCL = 21; LEV = 1.00; class HorizontalQuantumCoil(QCAlgorithm): def Initialize(self): self.Portfolio.MarginCallModel = MarginCallModel.Null self.SetStartDate(2008, 1, 1) self.SetCash(10000) self.added_cash = 115 self.upkeep = 28 self.simulate_live = False self.SetWarmUp(timedelta(252)) self.Settings.FreePortfolioValuePercentage = 0.05 # self.SetBrokerageModel(BrokerageName.AlphaStreams) self.SetAlpha(DualMomentumWithOutDaysAlphaModel(self, VOLA, BASE_RET, Resolution.Daily)) stonks = ['FDN', 'QQQ', 'IWM', 'SPY', 'VTI', 'DIA', 'IWF', 'TLT', 'TLH', 'IEI', 'IEF'] # , 'SPDN' # 'IYW', 'IVV', #lev_stonks = ['TQQQ', 'URTY', 'SPXL', 'TMF']# , 'AGQ', 'UGL'] # stonks = ['ITOT', 'IVV', 'IJH', 'IJR', 'XT', 'IHAK', 'IWFH', 'IDNA', 'IRBO', 'TECB', 'BFTR', 'BTEK', 'BMED'] symbols = [] # stonks = stonks + lev_stonks for stonk in stonks: val = Symbol.Create(stonk, SecurityType.Equity, Market.USA) symbols.append(val) self.SetUniverseSelection(ManualUniverseSelectionModel(symbols)) self.UniverseSettings.Resolution = Resolution.Daily self.SetPortfolioConstruction(PortfolioManagementModel(self, RET, EXCL, LEV, Resolution.Daily, portfolioBias = PortfolioBias.Long)) self.SetExecution(ScheduledExecutionModel(self)) self.SetRiskManagement(CustomRiskModel(self, maximumDrawdownPercent = 0.025, maximumUnrealizedProfitPercent = 0.175, resolution = Resolution.Daily)) #self.SetRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(maximumUnrealizedProfitPercent = 0.15)) # 0.15 #self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(maximumDrawdownPercent = 0.025)) #self.SetRiskManagement(MaximumDrawdownPercentPortfolio(maximumDrawdownPercent = 0.08, isTrailing = False)) #self.SetRiskManagement(TrailingStopRiskManagementModel(maximumDrawdownPercent = 0.04)) self.createPlots("SPY") for time in range(55, 295, 30): self.Schedule.On(self.DateRules.EveryDay("SPY"), \ self.TimeRules.AfterMarketOpen("SPY", time), \ self.UpdateTickets) if self.simulate_live: self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday), \ self.TimeRules.BeforeMarketClose("SPY", 0), \ self.AddCash) self.Schedule.On(self.DateRules.MonthStart("SPY"), \ self.TimeRules.BeforeMarketClose("SPY", 0), \ self.UpKeep) def AddCash(self): self.Portfolio.SetCash(self.Portfolio.Cash + self.added_cash) def UpKeep(self): self.Portfolio.SetCash(self.Portfolio.Cash - self.upkeep) def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(VOLA + 1):] def createPlots(self, benchmark): self.__benchmark = benchmark self.__plot_every_n_days = 5 self.__plot_every_n_days_i = 0 plot = Chart('Performance') plot.AddSeries(Series(self.__benchmark, SeriesType.Line, 0, '%')) plot.AddSeries(Series("Algorithm", SeriesType.Line, 0, '%')) self.AddChart(plot) self.ResetPlot() def ResetPlot(self): self.year = self.Time.year self.__cost_portfolio = None self.__cost_benchmark = None def CalculateBenchmarkPerformance(self): price = self.Securities[self.__benchmark].Price if self.__cost_benchmark == None: self.__cost_benchmark = price return 100.0 * ((price / self.__cost_benchmark) - 1.0) def CalculatePortfolioPerformance(self): if self.__cost_portfolio == None: self.__cost_portfolio = self.Portfolio.TotalPortfolioValue return 100.0 * ((self.Portfolio.TotalPortfolioValue / self.__cost_portfolio) - 1.0) def OnEndOfDay(self): if self.IsWarmingUp or not self.Securities[self.__benchmark].HasData: return openOrders = self.Transactions.GetOpenOrders() openLimitOrders = [order for order in openOrders if (order.Type == OrderType.Limit) or (order.Type == OrderType.StopMarket)] if len(openLimitOrders)> 0: for x in openLimitOrders: self.Transactions.CancelOrder(x.Id) if self.Time.year != self.year: self.ResetPlot() self.__plot_every_n_days_i == -1 self.__plot_every_n_days_i += 1 if self.__plot_every_n_days_i % self.__plot_every_n_days != 0: return self.Plot('Performance', self.__benchmark, self.CalculateBenchmarkPerformance()) self.Plot('Performance', "Algorithm", self.CalculatePortfolioPerformance()) self.Plot(f"Cash", "Remaining", self.Portfolio.Cash) for kvp in self.Portfolio: security_holding = kvp.Value sec = security_holding.Symbol.Value if self.Portfolio[sec].Invested: self.Plot(f"UnrealizedProfitPercent", str(sec), self.Portfolio[sec].UnrealizedProfitPercent) # security_holding = round(float(self.Portfolio[sec].AveragePrice*self.Portfolio[sec].Quantity), 3) # if security_holding >= int(self.Portfolio.Cash*0.4): # self.Plot(f"UnrealizedProfitPercent", str(sec)+"_at 0.5 bp", self.Portfolio[sec].UnrealizedProfitPercent) # elif security_holding >= int(self.Portfolio.Cash*0.1): # self.Plot(f"UnrealizedProfitPercent", str(sec)+"_at 0.1 bp", self.Portfolio[sec].UnrealizedProfitPercent) # self.Plot(f"Cash", str(sec), round(self.Portfolio[sec].AveragePrice*self.Portfolio[sec].Quantity, 4)) def MarketOpen(self): return self.Time.hour != 0 and self.Time.minute == 1 def UpdateTickets(self): openOrders = self.Transactions.GetOpenOrders() openLimitOrders = [order for order in openOrders if (order.Type == OrderType.Limit) or (order.Type == OrderType.StopMarket)] if len(openLimitOrders)> 0: for x in openLimitOrders: self.Transactions.CancelOrder(x.Id) invested = [x.Key for x in self.Portfolio if x.Value.Invested] for symbol in invested: security_holding = self.Portfolio[symbol] quantity = security_holding.Quantity price = security_holding.AveragePrice unrealized_profit_pct = self.Portfolio[symbol].UnrealizedProfitPercent security_holding = round(float(self.Portfolio[symbol].AveragePrice*self.Portfolio[symbol].Quantity), 3) if security_holding >= int(self.Portfolio.Cash*0.4): if self.Securities[symbol].Price > round(self.Portfolio[symbol].AveragePrice*1.1, 3): stopPrice = self.Securities[symbol].Price * 0.9725 limitPrice = self.Securities[symbol].Price * 1.0375 self.StopMarketOrder(symbol, -quantity, stopPrice) self.LimitOrder(symbol, -quantity, limitPrice) elif security_holding <= int(self.Portfolio.Cash*0.25): if self.Securities[symbol].Price > round(self.Portfolio[symbol].AveragePrice*1.1, 3): stopPrice = self.Securities[symbol].Price * 0.97 limitPrice = self.Securities[symbol].Price * 1.05 self.StopMarketOrder(symbol, -quantity, stopPrice) self.LimitOrder(symbol, -quantity, limitPrice)
from AlgorithmImports import * from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Data.Market import TradeBar from QuantConnect.Indicators.CandlestickPatterns import * import pandas as pd import numpy as np from scipy import stats import statistics from operator import itemgetter from functools import reduce from symbol_data_functions import SymbolData class CustomRiskModel(RiskManagementModel): def __init__(self, algorithm, maximumDrawdownPercent = 0.03, maximumUnrealizedProfitPercent = 0.15, resolution = Resolution.Daily, *args, **kwargs): super().__init__() '''Initializes a new instance class with various risk management systems Args: maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with the highest unrealized profit, defaults to 5% drawdown maximumUnrealizedProfitPercent: The maximum percentage unrealized profit allowed for any single security holding, defaults to 5% drawdown per security''' self.maximumDrawdownPercent = abs(maximumDrawdownPercent) self.maximumUnrealizedProfitPercent = abs(maximumUnrealizedProfitPercent) self.resolution = resolution self.trailing = dict() # self.data = {} # invested = [x.Key for x in algorithm.Portfolio if x.Value.Invested] # for symbol in invested: # symbol = algorithm.Portfolio[symbol] # algorithm.AddEquity(symbol, Resolution.Hour).Symbol # self.data[symbol] = SymbolData(algorithm, symbol) def ManageRisk(self, algorithm, targets): '''Manages the algorithm's risk at each time step Args: algorithm: The algorithm instance targets: The current portfolio targets to be assessed for risk''' targets = [] for kvp in algorithm.Securities: security = kvp.Value if not security.Invested: # self.trailing.pop(security.Symbol, None) continue unrealized_profit_pct = security.Holdings.UnrealizedProfitPercent # cond = (self.data[security.Symbol].rocSignal_fast.Current.Value < 0.0) and (self.data[security.Symbol].volSignal_fast.Current.Value < 0.0) # signals = ((self.data[security.Symbol].breakdown or ((not self.data[security.Symbol].vpnIndicator) and (self.data[security.Symbol].is_downtrend) or (self.data[security.Symbol].exit_signal and self.data[security.Symbol].rsi_exit_signal and self.data[security.Symbol].macd_exit_signal and self.data[security.Symbol].quick_down))) or (self.data[security.Symbol].macd_downtrend and self.data[security.Symbol].rsi_downtrend)) # roc_sum = sum([self.data[security.Symbol].roc.Current.Value, self.data[security.Symbol].roc_fast.Current.Value, self.data[security.Symbol].roc_med.Current.Value, self.data[security.Symbol].roc_long.Current.Value]) < -5 # cost = security.Holdings.AveragePrice * security.Holdings.Quantity # # # Add newly invested securities # value = self.trailing.get(security.Symbol) # if value == None: # newValue = unrealized_profit_pct if unrealized_profit_pct > 0 else 0 # self.trailing[security.Symbol] = newValue # continue # # # Check for new high and update # if value < unrealized_profit_pct: # self.trailing[security.Symbol] = unrealized_profit_pct # continue # If maximum unrealized profit percent reached, liquidate if unrealized_profit_pct > self.maximumUnrealizedProfitPercent: targets.append(PortfolioTarget(security.Symbol, 0)) # If unrealized profit percent deviates from local max for more than affordable percentage and \ # if unrealized profit >= 10% # # If exit signal triggered, liquidate # if ((self.data[security.Symbol].candle_downtrend) and (cond or signals or (self.data[security.Symbol].ll_sum and self.data[security.Symbol].ll_all))): # targets.append(PortfolioTarget(security.Symbol, 0)) return targets # def OnSecuritiesChanged(self, algorithm, changes): # addedSymbols = [] # for security in changes.AddedSecurities: # addedSymbols.append(security.Symbol) # if security.Symbol not in self.data: # self.data[security.Symbol] = SymbolData(algorithm, security.Symbol) # for removed in changes.RemovedSecurities: # # clean up removed security data # if removed.Symbol in self.data: # if self.IsSafeToRemove(algorithm, removed.Symbol): # data = self.data.pop(removed.Symbol) # algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) # if len(addedSymbols) > 0: # history = algorithm.History(addedSymbols, 84, Resolution.Daily).loc[addedSymbols] # for symbol in addedSymbols: # try: # self.data[security.Symbol].Warmup(history.loc[security.Symbol]) # except: # algorithm.Debug(str(security.Symbol)) # continue # def IsSafeToRemove(self, algorithm, symbol): # '''Determines if it's safe to remove the associated symbol data''' # # confirm the security isn't currently a member of any universe # return not any([kvp.Value.ContainsMember(symbol) for kvp in algorithm.UniverseManager])
from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Data.Market import TradeBar from QuantConnect.Indicators.CandlestickPatterns import * import pandas as pd import numpy as np from scipy import stats import statistics from operator import itemgetter from functools import reduce from helpers import myPortfolioOptimizer from symbol_data_functions import SymbolData class PortfolioManagementModel(PortfolioConstructionModel): def __init__(self, algorithm, RET=252, EXCL=21, LEV=1.00, resolution = Resolution.Daily, portfolioBias = PortfolioBias.Long, *args, **kwargs): super().__init__() self.portfolioBias = portfolioBias self.resolution = resolution self.RET = RET self.EXCL = EXCL self.LEV = LEV self.VOLA = 126 self.STK1 = algorithm.AddEquity('SPY', self.resolution).Symbol # SPXL/SPY self.STK2 = algorithm.AddEquity('QQQ', self.resolution).Symbol # TQQQ/QQQ self.STK3 = algorithm.AddEquity('IWM', self.resolution).Symbol # URTY/IWM self.STK4 = algorithm.AddEquity('DIA', self.resolution).Symbol # FDN/FDN self.STK5 = algorithm.AddEquity('VTI', self.resolution).Symbol # AGQ/VTI self.STK6 = algorithm.AddEquity('FDN', self.resolution).Symbol # AGQ/VTI self.STK7 = algorithm.AddEquity('IWF', self.resolution).Symbol # AGQ/VTI self.BND1 = algorithm.AddEquity('TLH', self.resolution).Symbol # TMF/TLH self.BND2 = algorithm.AddEquity('TLT', self.resolution).Symbol # UGL/TLT self.BND3 = algorithm.AddEquity('IEI', self.resolution).Symbol # TMF/TLH self.BND4 = algorithm.AddEquity('IEF', self.resolution).Symbol # UGL/TLT # self.LEV1 = algorithm.AddEquity('SPXL', self.resolution).Symbol # self.LEV2 = algorithm.AddEquity('TQQQ', self.resolution).Symbol # self.LEV3 = algorithm.AddEquity('URTY', self.resolution).Symbol # self.LEV4 = algorithm.AddEquity('TMF', self.resolution).Symbol # self.SECT1 = algorithm.AddEquity('XLK', self.resolution).Symbol # self.SECT2 = algorithm.AddEquity('XLF', self.resolution).Symbol # self.SECT3 = algorithm.AddEquity('XLV', self.resolution).Symbol # self.SECT4 = algorithm.AddEquity('XLE', self.resolution).Symbol # self.SECT5 = algorithm.AddEquity('XLY', self.resolution).Symbol # self.SECT6 = algorithm.AddEquity('XLU', self.resolution).Symbol # self.SECT7 = algorithm.AddEquity('XLV', self.resolution).Symbol # self.SECTORS = [self.SECT1, self.SECT2, self.SECT3, self.SECT4, self.SECT5, self.SECT6, self.SECT7] self.STOCKS = [self.STK1, self.STK2, self.STK3, self.STK4, self.STK5, self.STK6, self.STK7] #self.STOCKS_LEV = [self.LEV1, self.LEV2, self.LEV3] self.BONDS = [self.BND1, self.BND2, self.BND3, self.BND4] #self.BONDS_LEV = [self.LEV4] self.ASSETS = self.STOCKS + self.BONDS #+ self.STOCKS_LEV + self.BONDS_LEV self.data = dict() self.dataWeek = dict() for symbol in self.ASSETS: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = np.log(algorithm.History(self.ASSETS, self.VOLA + 1, self.resolution)) self.pfo = myPortfolioOptimizer(minWeight=0, maxWeight=1) for symbol in self.ASSETS: algorithm.Securities[symbol].SetLeverage(1) def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(self.VOLA + 1):] def OnSecuritiesChanged(self, algorithm, changes): addedSymbols = [] for security in changes.AddedSecurities: addedSymbols.append(security.Symbol) if security.Symbol not in self.data: self.data[security.Symbol] = SymbolData(algorithm, security.Symbol, Resolution.Daily) if len(addedSymbols) > 0: history = algorithm.History(addedSymbols, self.VOLA + 1, self.resolution).loc[addedSymbols] for symbol in addedSymbols: try: self.data[symbol].Warmup(history.loc[symbol]) except: algorithm.Debug(str(symbol)) continue def returns_custom(self, symbol, timeframe): prices = np.log(algorithm.History(symbol, TimeSpan.FromDays(21), self.resolution).close) return round((prices[-timeframe] - prices[-5]) / prices[-5], 4) def calc_cndl_score(self, asset): cndl_coef = sum([ self.data[asset].cndl_abandonedbaby.Current.Value, self.data[asset].cndl_advanceblock.Current.Value, self.data[asset].cndl_belthold.Current.Value, self.data[asset].cndl_breakway.Current.Value, self.data[asset].cndl_closingmarubozu.Current.Value, self.data[asset].cndl_concealedbabyswallow.Current.Value, self.data[asset].cndl_counterattack.Current.Value, self.data[asset].cndl_darkcloudcover.Current.Value, self.data[asset].cndl_doji.Current.Value, self.data[asset].cndl_dojistar.Current.Value, self.data[asset].cndl_dragonflydoji.Current.Value, self.data[asset].cndl_engulfing.Current.Value, self.data[asset].cndl_eveningdojistar.Current.Value, self.data[asset].cndl_eveningstar.Current.Value, self.data[asset].cndl_gapsidebysidewhite.Current.Value, self.data[asset].cndl_gravestonedoji.Current.Value, self.data[asset].cndl_hammer.Current.Value, self.data[asset].cndl_hangingman.Current.Value, self.data[asset].cndl_harami.Current.Value, self.data[asset].cndl_haramicross.Current.Value, self.data[asset].cndl_highwavecandle.Current.Value, self.data[asset].cndl_hikkake.Current.Value, self.data[asset].cndl_hikkakemodified.Current.Value, self.data[asset].cndl_homingpigeon.Current.Value, self.data[asset].cndl_identicalthreecrows.Current.Value, self.data[asset].cndl_inneck.Current.Value, self.data[asset].cndl_invertedhammer.Current.Value, self.data[asset].cndl_kicking.Current.Value, self.data[asset].cndl_kickingbylength.Current.Value, self.data[asset].cndl_ladderbottom.Current.Value, self.data[asset].cndl_longleggeddoji.Current.Value, self.data[asset].cndl_longlinecandle.Current.Value, self.data[asset].cndl_marubozu.Current.Value, self.data[asset].cndl_mathold.Current.Value, self.data[asset].cndl_matchinglow.Current.Value, self.data[asset].cndl_morningdojistar.Current.Value, self.data[asset].cndl_morningstar.Current.Value, self.data[asset].cndl_onneck.Current.Value, self.data[asset].cndl_pierce.Current.Value, self.data[asset].cndl_rickshawman.Current.Value, self.data[asset].cndl_risefallthreemethods.Current.Value, self.data[asset].cndl_separatinglines.Current.Value, self.data[asset].cndl_shootingstar.Current.Value, self.data[asset].cndl_shortlinecandle.Current.Value, self.data[asset].cndl_spinningtop.Current.Value, self.data[asset].cndl_stalledpattern.Current.Value, self.data[asset].cndl_sticksandwich.Current.Value, self.data[asset].cndl_takuri.Current.Value, self.data[asset].cndl_tasukigap.Current.Value, self.data[asset].cndl_threeblackcrows.Current.Value, self.data[asset].cndl_threeinside.Current.Value, self.data[asset].cndl_threelinest.Current.Value, self.data[asset].cndl_threeoutside.Current.Value, self.data[asset].cndl_threestarsinsouth.Current.Value, self.data[asset].cndl_threewhitesoldiers.Current.Value, self.data[asset].cndl_thrusting.Current.Value, self.data[asset].cndl_tristar.Current.Value, self.data[asset].cndl_twocrows.Current.Value, self.data[asset].cndl_uniquethreeriver.Current.Value, self.data[asset].cndl_updowngapthreemethods.Current.Value, self.data[asset].cndl_upsidegaptwocrows.Current.Value ]) return cndl_coef def custom_filter(self, algorithm, symbol, filter_type = 'both'): slope_cond = (self.data[symbol].roc_slope > 0.00) and (self.data[symbol].vol_slope > 0.00) signals = (self.data[symbol].breakout or (self.data[symbol].vpnIndicator and (self.data[symbol].is_uptrend and self.data[symbol].trix_uptrend or (self.data[symbol].entry_signal and self.data[symbol].rsi_entry_signal and self.data[symbol].macd_entry_signal and self.data[symbol].williams_entry_signal and self.data[symbol].trix_entry_signal and self.data[symbol].quick_up))) or (self.data[symbol].macd_uptrend and self.data[symbol].rsi_uptrend)) quick_signals = (self.data[symbol].vpnIndicator and (self.data[symbol].breakout or self.data[symbol].entry_signal or self.data[symbol].rsi_entry_signal or self.data[symbol].macd_entry_signal or self.data[symbol].williams_entry_signal or self.data[symbol].quick_up)) not_signals = (self.data[symbol].breakdown or ((not self.data[symbol].vpnIndicator) and (self.data[symbol].is_downtrend or (self.data[symbol].exit_signal and self.data[symbol].rsi_exit_signal and self.data[symbol].macd_exit_signal and self.data[symbol].williams_exit_signal and self.data[symbol].quick_down))) or (self.data[symbol].macd_downtrend and self.data[symbol].rsi_downtrend)) hh_cond = self.data[symbol].hh_all and self.data[symbol].hh_sum ll_cond = self.data[symbol].ll_all and self.data[symbol].ll_sum rocsignal = all(x > 0.0 for x in [self.data[symbol].rocSignal_fast.Current.Value, self.data[symbol].rocSignal_med.Current.Value, self.data[symbol].rocSignal_long.Current.Value]) volsignal = all(x > 0.0 for x in [self.data[symbol].volSignal_fast.Current.Value, self.data[symbol].volSignal_med.Current.Value, self.data[symbol].volSignal_long.Current.Value]) roc_vol_signal = rocsignal and volsignal if filter_type == 'both': if (slope_cond) and (signals): return True else: return False if filter_type == 'either': if (slope_cond) or (signals): return True else: return False if filter_type == 'quick': if roc_vol_signal and quick_signals: return True else: return False if filter_type == 'lev': if (slope_cond) and (self.data[symbol].median_roc_momentum >= 0.005) and (signals): return True else: return False def calc_vola(self, algorithm, sec): prices = np.log(algorithm.History(sec, TimeSpan.FromDays(126), self.resolution).close) volatility = prices.pct_change().std() * np.sqrt(252) return volatility*prices.pct_change()[-1] def CreateTargets(self, algorithm, insights): if algorithm.IsWarmingUp: return [] targets = [] # We expect at most only one active insight since we only # generate insights for one equity. assert len(insights) <= 1 if len(insights) == 1: insight = insights[0] #if insight.Direction != InsightDirection.Flat: williams_fast = ((self.data[self.STK1].williamsPR.Current.Value >= -95.00) and (self.data[self.STK2].williamsPR.Current.Value >= -95.00)) williams_slow = ((self.data[self.STK1].williamsPR_slow.Current.Value >= -95.00) and (self.data[self.STK2].williamsPR_slow.Current.Value >= -95.00)) williams_median = ((self.data[self.STK1].williams_median >= -80.00) and (self.data[self.STK2].williams_median >= -80.00)) williams = williams_fast and williams_slow and williams_median market_uptrend = (self.custom_filter(algorithm, self.STK1, filter_type = 'both') and self.custom_filter(algorithm, self.STK2, filter_type = 'both')) bond_uptrend = (self.custom_filter(algorithm, self.BND1, filter_type = 'both') and self.custom_filter(algorithm, self.BND2, filter_type = 'both')) if insight.Direction == InsightDirection.Down and williams and (not market_uptrend): self.bull = False else: self.bull = True for sec in self.ASSETS: algorithm.Plot("Volatility", str(sec), float(self.calc_vola(algorithm, sec))) selected = list() if self.bull: stocks = [(symbol, self.data[symbol].median_roc, self.data[symbol].scale, float(self.calc_vola(algorithm, symbol))) for symbol in self.STOCKS if self.custom_filter(algorithm, symbol, filter_type = 'both') is True] stocks.sort(key=itemgetter(1, 2, 3), reverse=True) for sec, roc, vpn, vola in stocks: if (len(selected) < 2): selected.append(sec) if len(selected) < 2: stocks = [(symbol, self.data[symbol].median_roc, self.data[symbol].scale, float(self.calc_vola(algorithm, symbol))) for symbol in self.STOCKS if self.custom_filter(algorithm, symbol, filter_type = 'either') is True] stocks.sort(key=itemgetter(1, 2, 3), reverse=True) for sec, roc, vpn, vola in stocks: if (len(selected) < 2) and (sec not in selected): selected.append(sec) elif not self.bull: bonds = [(symbol, self.data[symbol].median_roc, self.data[symbol].scale, float(self.calc_vola(algorithm, symbol))) for symbol in self.BONDS if self.custom_filter(algorithm, symbol, filter_type = 'both') is True] bonds.sort(key=itemgetter(1, 2, 3), reverse=True) for sec, roc, vpn, vola in bonds: if (len(selected) < 2): selected.append(sec) if len(selected) < 2: bonds = [(symbol, self.data[symbol].median_roc, self.data[symbol].scale, float(self.calc_vola(algorithm, symbol))) for symbol in self.BONDS if self.custom_filter(algorithm, symbol, filter_type = 'either') is True] bonds.sort(key=itemgetter(1, 2, 3), reverse=True) for sec, roc, vpn, vola in bonds: if (len(selected) < 2) and (sec not in selected): selected.append(sec) # if insight.Direction == InsightDirection.Flat: # return [] # self.asset_weights = self.pfo.CalcWeights(algorithm, selected, 'riskParity', lookback=21) # self.asset_weights_max = self.pfo.CalcWeights(algorithm, selected, 'maxReturn', lookback=21) # self.asset_weights_max_two = self.pfo.CalcWeights(algorithm, selected, 'maxReturn', lookback=42) for asset in self.ASSETS: if asset in selected: # weight = self.asset_weights[self.asset_weights.index == str(asset.Value)][0] # weight_max = self.asset_weights_max_two[self.asset_weights_max_two.index == str(asset.Value)][0] cond_both = self.custom_filter(algorithm, asset, filter_type = 'both') cond_either = self.custom_filter(algorithm, asset, filter_type = 'either') cond1 = ((self.calc_cndl_score(asset) > 0) and cond_both) cond2 = ((self.calc_cndl_score(asset) >= -2) or (cond_both and self.data[asset].cndl_uptrend)) cond3 = ((self.calc_cndl_score(asset) >= -2) or (cond_either and self.data[asset].cndl_uptrend)) rocsignal = all(x > 0.0 for x in [self.data[asset].rocSignal_fast.Current.Value, self.data[asset].rocSignal_med.Current.Value, self.data[asset].rocSignal_long.Current.Value]) volsignal = all(x > 0.0 for x in [self.data[asset].volSignal_fast.Current.Value, self.data[asset].volSignal_med.Current.Value, self.data[asset].volSignal_long.Current.Value]) roc_vol_signal = rocsignal and volsignal if (algorithm.Portfolio[asset].Invested and (cond2 or cond3)) or cond1: targets.append(PortfolioTarget.Percent(algorithm, asset, 0.5)) elif not algorithm.Portfolio[asset].Invested and (cond2 or cond3): if roc_vol_signal: targets.append(PortfolioTarget.Percent(algorithm, asset, 0.25)) else: targets.append(PortfolioTarget.Percent(algorithm, asset, 0.1)) else: targets.append(PortfolioTarget.Percent(algorithm, asset, 0.0)) return targets
from AlgorithmImports import * from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Data.Market import TradeBar from QuantConnect.Indicators.CandlestickPatterns import * import inspect import pandas as pd import numpy as np from scipy import stats from scipy.signal import argrelextrema import statistics from operator import itemgetter from functools import reduce from FilterIndicators import * from SmartRollingWindow import * from pykalman import KalmanFilter class SymbolData(object): def __init__(self, algorithm, symbol, resolution = Resolution.Daily): self.Symbol = symbol self.res = Resolution.Daily self.lookback = 20 self.ceiling = 30 self.floor = 10 self.breakout = False self.breakdown = False self.quick_up = False self.quick_down = False self.hh_all = False self.ll_all = False self.hh_sum = False self.ll_sum = False self.fir = 0.00 self.EXCL = 21 self.scale = 0.00 self.is_uptrend = False self.is_downtrend = False self.volatility = 0.00 self.tolerance = 0.98 self.vol_slope = 0.00 self.vol_fast_slope = 0.00 self.roc_slope = 0.00 self.roc_fast_slope = 0.00 self.median_roc = 0.00 self.median_vol = 0.00 self.stochasticFast = Stochastic(14, 3, 3) self.fast = VolumeWeightedAveragePriceIndicator(int(8*1.0)) self.fast_window = RollingWindow[float](41) self.stochasticSlow = Stochastic(21, 3, 3) self.slow = VolumeWeightedAveragePriceIndicator(int(14*1.0)) self.slow_window = RollingWindow[float](41) self.roc = RateOfChange(int(5*1.0)) self.roc_fast = RateOfChange(int(3*1.0)) self.roc_med = RateOfChange(int(8*1.0)) self.roc_long = RateOfChange(int(14*1.0)) self.vol_roc = RateOfChange(int(5*1.0)) self.vol_roc_fast = RateOfChange(int(3*1.0)) self.vol_roc_med = RateOfChange(int(8*1.0)) self.vol_roc_long = RateOfChange(int(14*1.0)) self.roc_window = RollingWindow[float](5) self.roclen_window = RollingWindow[float](8) self.rocSum_window = RollingWindow[float](8) self.vol_window = RollingWindow[float](5) self.prices_window = RollingWindow[float](41) self.low_window = RollingWindow[float](41) self.high_window = RollingWindow[float](41) self.roc_prices_window = RollingWindow[float](41) self.roc_prices_lev_window = RollingWindow[float](10) self.roc_volume_window = RollingWindow[float](41) self.stochasticMACD = Stochastic(34, 3, 3) self.macd = MovingAverageConvergenceDivergence(12, 26, 9, MovingAverageType.Exponential) self.macd_stochfast_window = RollingWindow[float](5) self.macdStochFastWindow = SmartRollingWindow("float", 5) self.macd_stochk_window = RollingWindow[float](5) self.macdStochKWindow = SmartRollingWindow("float", 5) self.macd_stochd_window = RollingWindow[float](5) self.macdStochDWindow = SmartRollingWindow("float", 5) self.macd_window = RollingWindow[float](5) self.macdHist_window = RollingWindow[float](5) self.macdFast_window = RollingWindow[float](5) self.macdSlow_window = RollingWindow[float](5) self.macdSignal_window = RollingWindow[float](5) self.macdDelta_window = RollingWindow[float](5) self.macd_uptrend = False self.macd_downtrend = False self.macd_entry_signal = False self.macd_exit_signal = False self.stochasticRSI = Stochastic(21, 3, 3) self.rsi = RelativeStrengthIndex(14, MovingAverageType.Wilders) self.rsi_window = RollingWindow[float](5) self.rsiWindow = SmartRollingWindow("float", 5) self.rsiFastStoch_window = RollingWindow[float](5) self.rsiStochFastWindow = SmartRollingWindow("float", 5) self.rsiStochK_window = RollingWindow[float](5) self.rsiStochKWindow = SmartRollingWindow("float", 5) self.rsiStochD_window = RollingWindow[float](5) self.rsiStochDWindow = SmartRollingWindow("float", 5) self.rsi_uptrend = False self.rsi_downtrend = False self.rsi_entry_signal = False self.rsi_exit_signal = False self.williamsPR = WilliamsPercentR(14) self.williamsPR_slow = WilliamsPercentR(21) self.williamsWindow = RollingWindow[float](5) self.williamsPR_window = RollingWindow[float](5) self.williamsPRWindow = SmartRollingWindow("float", 5) self.williamsPR_slow_window = RollingWindow[float](5) self.williamsPR_slowWindow = SmartRollingWindow("float", 5) self.williams_median_roc = 0.00 self.williams_median = 0.00 self.williams_uptrend = False self.williams_downtrend = False self.vpnIndicator = False self.vpnScale = 0.00 self.vpn_period = 10 self.atr = AverageTrueRange(self.vpn_period, MovingAverageType.Exponential) self.vpn_vol_window = RollingWindow[float](self.vpn_period) self.vpn_hlc_window = RollingWindow[float](self.vpn_period) self.vpn_lst = RollingWindow[float](6) self.stochasticTrix = Stochastic(21, 3, 3) self.trix = Trix(9) self.trix_slow = Trix(18) self.trixFastStoch_window = RollingWindow[float](5) self.trixStochFastWindow = SmartRollingWindow("float", 5) self.trixStochK_window = RollingWindow[float](5) self.trixStochKWindow = SmartRollingWindow("float", 5) self.trixStochD_window = RollingWindow[float](5) self.trixStochDWindow = SmartRollingWindow("float", 5) self.trix_uptrend = False self.trix_downtrend = False self.trix_entry_signal = False self.trix_exit_signal = False self.rocSignal_quick = IndicatorExtensions.Over(self.roc_fast, self.roc_med) self.volSignal_quick = IndicatorExtensions.Over(self.vol_roc_fast, self.vol_roc_med) self.rocSignal_fast = IndicatorExtensions.Over(self.roc_fast, self.roc) self.volSignal_fast = IndicatorExtensions.Over(self.vol_roc_fast, self.vol_roc) self.rocSignal_med = IndicatorExtensions.Over(self.roc, self.roc_med) self.volSignal_med = IndicatorExtensions.Over(self.vol_roc, self.vol_roc_med) self.rocSignal_long = IndicatorExtensions.Over(self.roc_med, self.roc_long) self.volSignal_long = IndicatorExtensions.Over(self.vol_roc_med, self.vol_roc_long) self.rocvolSignal_Window = RollingWindow[float](5) self.rocvolSignal_median = 0.00 self.kalFilter = KalmanFilterIndicator(name='Kalman', period=5, selector=Field.Close) self.kalFilterLow = KalmanFilterIndicator(name='Kalman', period=5, selector=Field.Low) self.kalFilterHigh = KalmanFilterIndicator(name='Kalman', period=5, selector=Field.High) self.kalWindow = SmartRollingWindow("float", 5) self.kalWindowLow = SmartRollingWindow("float", 5) self.kalWindowHigh = SmartRollingWindow("float", 5) self.priceWindow = SmartRollingWindow("float", 5) self.priceWindowLow = SmartRollingWindow("float", 5) self.priceWindowHigh = SmartRollingWindow("float", 5) self.exit_signal = False self.entry_signal = False # Candles self.cndl_abandonedbaby = AbandonedBaby() self.cndl_advanceblock = AdvanceBlock() self.cndl_belthold = BeltHold() self.cndl_breakway = Breakaway() self.cndl_closingmarubozu = ClosingMarubozu() self.cndl_concealedbabyswallow = ConcealedBabySwallow() self.cndl_counterattack = Counterattack() self.cndl_darkcloudcover = DarkCloudCover() self.cndl_doji = Doji() self.cndl_dojistar = DojiStar() self.cndl_dragonflydoji = DragonflyDoji() self.cndl_engulfing = Engulfing() self.cndl_eveningdojistar = EveningDojiStar() self.cndl_eveningstar = EveningStar() self.cndl_gapsidebysidewhite = GapSideBySideWhite() self.cndl_gravestonedoji = GravestoneDoji() self.cndl_hammer = Hammer() self.cndl_hangingman = HangingMan() self.cndl_harami = Harami() self.cndl_haramicross = HaramiCross() self.cndl_highwavecandle = HighWaveCandle() self.cndl_hikkake = Hikkake() self.cndl_hikkakemodified = HikkakeModified() self.cndl_homingpigeon = HomingPigeon() self.cndl_identicalthreecrows = IdenticalThreeCrows() self.cndl_inneck = InNeck() self.cndl_invertedhammer = InvertedHammer() self.cndl_kicking = Kicking() self.cndl_kickingbylength = KickingByLength() self.cndl_ladderbottom = LadderBottom() self.cndl_longleggeddoji = LongLeggedDoji() self.cndl_longlinecandle = LongLineCandle() self.cndl_marubozu = Marubozu() self.cndl_mathold = MatHold() self.cndl_matchinglow = MatchingLow() self.cndl_morningdojistar = MorningDojiStar() self.cndl_morningstar = MorningStar() self.cndl_onneck = OnNeck() self.cndl_pierce = Piercing() self.cndl_rickshawman = RickshawMan() self.cndl_risefallthreemethods = RiseFallThreeMethods() self.cndl_separatinglines = SeparatingLines() self.cndl_shootingstar = ShootingStar() self.cndl_shortlinecandle = ShortLineCandle() self.cndl_spinningtop = SpinningTop() self.cndl_stalledpattern = StalledPattern() self.cndl_sticksandwich = StickSandwich() self.cndl_takuri = Takuri() self.cndl_tasukigap = TasukiGap() self.cndl_threeblackcrows = ThreeBlackCrows() self.cndl_threeinside = ThreeInside() self.cndl_threelinest = ThreeLineStrike() self.cndl_threeoutside = ThreeOutside() self.cndl_threestarsinsouth = ThreeStarsInSouth() self.cndl_threewhitesoldiers = ThreeWhiteSoldiers() self.cndl_thrusting = Thrusting() self.cndl_tristar = Tristar() self.cndl_twocrows = TwoCrows() self.cndl_uniquethreeriver = UniqueThreeRiver() self.cndl_updowngapthreemethods = UpDownGapThreeMethods() self.cndl_upsidegaptwocrows = UpsideGapTwoCrows() self.candleWindow = SmartRollingWindow("float", 5) self.candleavgWindow = SmartRollingWindow("float", 5) self.candleContainer = RollingWindow[float](2) self.cndl_uptrend = False self.cndl_downtrend = False self.candlescore = 0.00 if self.res == Resolution.Daily: consolidator = algorithm.ResolveConsolidator(symbol, self.res) tf_coef = 1 else: consolidator = TradeBarConsolidator(timedelta(minutes=240)) tf_coef = 6 self.indicators = [self.roc, self.roc_fast, self.roc_med, self.roc_long, self.vol_roc, self.vol_roc_fast, self.vol_roc_med, self.vol_roc_long, self.fast, self.stochasticFast, self.slow, self.stochasticSlow, self.macd, self.stochasticMACD, self.rsi, self.stochasticRSI, self.williamsPR, self.williamsPR_slow, self.atr, self.stochasticTrix, self.trix, self.trix_slow, self.kalFilter, self.kalFilterLow, self.kalFilterHigh] self.candles = [self.cndl_abandonedbaby, self.cndl_advanceblock, self.cndl_belthold, self.cndl_breakway, self.cndl_closingmarubozu, self.cndl_concealedbabyswallow, self.cndl_counterattack, self.cndl_darkcloudcover, self.cndl_doji, self.cndl_dojistar, self.cndl_dragonflydoji, self.cndl_engulfing, self.cndl_eveningdojistar, self.cndl_eveningstar, self.cndl_gapsidebysidewhite, self.cndl_gravestonedoji, self.cndl_hammer, self.cndl_hangingman, self.cndl_harami, self.cndl_haramicross, self.cndl_highwavecandle, self.cndl_hikkake, self.cndl_hikkakemodified, self.cndl_homingpigeon, self.cndl_identicalthreecrows, self.cndl_inneck, self.cndl_invertedhammer, self.cndl_kicking, self.cndl_kickingbylength, self.cndl_ladderbottom, self.cndl_longleggeddoji, self.cndl_longlinecandle, self.cndl_marubozu, self.cndl_mathold, self.cndl_matchinglow, self.cndl_morningdojistar, self.cndl_morningstar, self.cndl_onneck, self.cndl_pierce, self.cndl_rickshawman, self.cndl_risefallthreemethods, self.cndl_separatinglines, self.cndl_shootingstar, self.cndl_shortlinecandle, self.cndl_spinningtop, self.cndl_stalledpattern, self.cndl_sticksandwich, self.cndl_takuri, self.cndl_tasukigap, self.cndl_threeblackcrows, self.cndl_threeinside, self.cndl_threelinest, self.cndl_threeoutside, self.cndl_threestarsinsouth, self.cndl_threewhitesoldiers, self.cndl_thrusting, self.cndl_tristar, self.cndl_twocrows, self.cndl_uniquethreeriver, self.cndl_updowngapthreemethods, self.cndl_upsidegaptwocrows] self.indicators = self.indicators + self.candles for indicator in self.indicators: consolidator = algorithm.ResolveConsolidator(symbol, self.res) algorithm.RegisterIndicator(symbol, indicator, consolidator) # Warm up history = algorithm.History(symbol, 126*tf_coef, self.res) if history.empty or 'close' not in history.columns: return for index, row in history.loc[symbol].iterrows(): tradeBar = TradeBar(index, row['open'], row['high'], row['low'], row['close'], row['volume']) median_price = round(float(statistics.median([row['open'], row['high'], row['low'], row['close']])), 4) self.roc.Update(index, median_price) self.roc_fast.Update(index, median_price) self.roc_med.Update(index, median_price) self.roc_long.Update(index, median_price) self.rocSignal_quick.Update(index, median_price) self.rocSignal_fast.Update(index, median_price) self.rocSignal_med.Update(index, median_price) self.rocSignal_long.Update(index, median_price) self.vol_roc.Update(index, row['volume']) self.vol_roc_fast.Update(index, row['volume']) self.vol_roc_med.Update(index, row['volume']) self.vol_roc_long.Update(index, row['volume']) self.volSignal_quick.Update(index, row['volume']) self.volSignal_fast.Update(index, row['volume']) self.volSignal_med.Update(index, row['volume']) self.volSignal_long.Update(index, row['volume']) self.atr.Update(tradeBar) self.macd.Update(index, median_price) self.fast.Update(tradeBar) self.slow.Update(tradeBar) self.williamsPR.Update(tradeBar) self.williamsPR_slow.Update(tradeBar) self.rsi.Update(index, median_price) self.trix.Update(index, median_price) self.trix_slow.Update(index, median_price) # candles self.cndl_abandonedbaby.Update(tradeBar) self.cndl_advanceblock.Update(tradeBar) self.cndl_belthold.Update(tradeBar) self.cndl_breakway.Update(tradeBar) self.cndl_closingmarubozu.Update(tradeBar) self.cndl_concealedbabyswallow.Update(tradeBar) self.cndl_counterattack.Update(tradeBar) self.cndl_darkcloudcover.Update(tradeBar) self.cndl_doji.Update(tradeBar) self.cndl_dojistar.Update(tradeBar) self.cndl_dragonflydoji.Update(tradeBar) self.cndl_engulfing.Update(tradeBar) self.cndl_eveningdojistar.Update(tradeBar) self.cndl_eveningstar.Update(tradeBar) self.cndl_gapsidebysidewhite.Update(tradeBar) self.cndl_gravestonedoji.Update(tradeBar) self.cndl_hammer.Update(tradeBar) self.cndl_hangingman.Update(tradeBar) self.cndl_harami.Update(tradeBar) self.cndl_haramicross.Update(tradeBar) self.cndl_highwavecandle.Update(tradeBar) self.cndl_hikkake.Update(tradeBar) self.cndl_hikkakemodified.Update(tradeBar) self.cndl_homingpigeon.Update(tradeBar) self.cndl_identicalthreecrows.Update(tradeBar) self.cndl_inneck.Update(tradeBar) self.cndl_invertedhammer.Update(tradeBar) self.cndl_kicking.Update(tradeBar) self.cndl_kickingbylength.Update(tradeBar) self.cndl_ladderbottom.Update(tradeBar) self.cndl_longleggeddoji.Update(tradeBar) self.cndl_longlinecandle.Update(tradeBar) self.cndl_marubozu.Update(tradeBar) self.cndl_mathold.Update(tradeBar) self.cndl_matchinglow.Update(tradeBar) self.cndl_morningdojistar.Update(tradeBar) self.cndl_morningstar.Update(tradeBar) self.cndl_onneck.Update(tradeBar) self.cndl_pierce.Update(tradeBar) self.cndl_rickshawman.Update(tradeBar) self.cndl_risefallthreemethods.Update(tradeBar) self.cndl_separatinglines.Update(tradeBar) self.cndl_shootingstar.Update(tradeBar) self.cndl_shortlinecandle.Update(tradeBar) self.cndl_spinningtop.Update(tradeBar) self.cndl_stalledpattern.Update(tradeBar) self.cndl_sticksandwich.Update(tradeBar) self.cndl_takuri.Update(tradeBar) self.cndl_tasukigap.Update(tradeBar) self.cndl_threeblackcrows.Update(tradeBar) self.cndl_threeinside.Update(tradeBar) self.cndl_threelinest.Update(tradeBar) self.cndl_threeoutside.Update(tradeBar) self.cndl_threestarsinsouth.Update(tradeBar) self.cndl_threewhitesoldiers.Update(tradeBar) self.cndl_thrusting.Update(tradeBar) self.cndl_tristar.Update(tradeBar) self.cndl_twocrows.Update(tradeBar) self.cndl_uniquethreeriver.Update(tradeBar) self.cndl_updowngapthreemethods.Update(tradeBar) self.cndl_upsidegaptwocrows.Update(tradeBar) def calc_divergence(obj): x = np.array(obj) local_maxima = argrelextrema(x, np.greater)[0] local_minima = argrelextrema(x, np.less)[0] if x[-1] > x[-2]: x = np.append(x, len(x) - 1) elif x[-1] > x[-2]: x = np.append(x, len(x) - 1) # All higher highs hh = all(x[local_maxima][i] <= x[local_maxima][i+1] for i in range(len(local_maxima)-1)) # All lower lows ll = all(x[local_minima][i] >= x[local_minima][i+1] for i in range(len(local_minima)-1)) return hh, ll # Stochastic RSI if self.rsi.IsReady: rsi = self.rsi.Current.Value trade_bar = TradeBar(index, rsi, rsi, rsi, rsi, 0) self.stochasticRSI.Update(trade_bar) if self.stochasticRSI.IsReady: self.rsi_window.Add(rsi) self.rsiWindow.Add(rsi) self.rsiFastStoch_window.Add(self.stochasticRSI.FastStoch.Current.Value) self.rsiStochFastWindow.Add(self.stochasticRSI.FastStoch.Current.Value) self.rsiStochK_window.Add(self.stochasticRSI.StochK.Current.Value) self.rsiStochKWindow.Add(self.stochasticRSI.StochK.Current.Value) self.rsiStochD_window.Add(self.stochasticRSI.StochD.Current.Value) self.rsiStochDWindow.Add(self.stochasticRSI.StochD.Current.Value) if self.rsi_window.IsReady: rsi_lst = list(self.rsi_window) rsifast_lst = list(self.rsiFastStoch_window) rsistochk_lst = list(self.rsiStochK_window) rsistochd_lst = list(self.rsiStochD_window) cur_rsi, pre_rsi, lst_rsi = rsi_lst[-1], rsi_lst[-2], rsi_lst[-3] cur_fast, pre_fast, lst_fast = rsifast_lst[-1], rsifast_lst[-2], rsifast_lst[-3] cur_stochk, pre_stochk, lst_stochk = rsistochk_lst[-1], rsistochk_lst[-2], rsistochk_lst[-3] cur_stochd, pre_stochd, lst_stochd = rsistochd_lst[-1], rsistochd_lst[-2], rsistochd_lst[-3] cond1 = (cur_fast >= cur_stochk*self.tolerance) and (cur_fast >= cur_stochd*self.tolerance) and (cur_stochk >= cur_stochd*self.tolerance) cond2 = (cur_rsi >= pre_rsi*self.tolerance) and (cur_fast >= pre_fast*self.tolerance) and (cur_stochk >= pre_stochk*self.tolerance) and (cur_stochd >= pre_stochd*self.tolerance) cond3 = (pre_rsi >= lst_rsi*self.tolerance) and (pre_fast >= lst_fast*self.tolerance) and (pre_stochk >= lst_stochk*self.tolerance) and (pre_stochd >= lst_stochd*self.tolerance) cond4 = (cur_fast <= cur_stochk*self.tolerance) and (cur_fast <= cur_stochd*self.tolerance) and (cur_stochk <= cur_stochd*self.tolerance) cond5 = (cur_rsi <= pre_rsi*self.tolerance) and (cur_fast <= pre_fast*self.tolerance) and (cur_stochk <= pre_stochk*self.tolerance) and (cur_stochd <= pre_stochd*self.tolerance) cond6 = (pre_rsi <= lst_rsi*self.tolerance) and (pre_fast <= lst_fast*self.tolerance) and (pre_stochk <= lst_stochk*self.tolerance) and (pre_stochd <= lst_stochd*self.tolerance) hh_rsi, ll_rsi = calc_divergence(rsi_lst) hh_rsifast, ll_rsifast = calc_divergence(rsifast_lst) hh_rsik, ll_rsik = calc_divergence(rsistochk_lst) hh_rsid, ll_rsid = calc_divergence(rsistochd_lst) cond7 = hh_rsi, hh_rsifast, hh_rsik, hh_rsid cond8 = ll_rsi, ll_rsifast, ll_rsik, ll_rsid if (cond1 and cond7) and (cond2 and cond3): self.rsi_uptrend = True if (cond4 and cond8) and (cond5 and cond6): self.rsi_downtrend = True exit = self.rsiStochFastWindow.crossedBelow(self.rsiWindow) and self.rsiStochFastWindow.crossedBelow(self.rsiStochKWindow) and self.rsiStochKWindow.crossedBelow(self.rsiStochDWindow) entry = self.rsiStochFastWindow.crossedAbove(self.rsiWindow) and self.rsiStochFastWindow.crossedAbove(self.rsiStochKWindow) and self.rsiStochKWindow.crossedAbove(self.rsiStochDWindow) if algorithm.Portfolio[symbol].Invested: if exit: self.rsi_exit_signal = True if not algorithm.Portfolio[symbol].Invested: if entry: self.rsi_entry_signal = True # MACD Trend if self.macd.IsReady: macd = self.macd.Current.Value trade_bar = TradeBar(index, macd, macd, macd, macd, 0) self.stochasticMACD.Update(trade_bar) if self.stochasticMACD.IsReady: macd = self.macd.Current.Value macd_fast = self.macd.Fast.Current.Value macd_slow = self.macd.Slow.Current.Value macd_hist = self.macd.Histogram.Current.Value signal = self.macd.Signal.Current.Value delta = (macd - signal)/macd_fast macd_stochfast = self.stochasticMACD.FastStoch.Current.Value macd_stochk = self.stochasticMACD.StochK.Current.Value macd_stochd = self.stochasticMACD.StochD.Current.Value self.macd_window.Add(macd) self.macdFast_window.Add(macd_fast) self.macdSlow_window.Add(macd_slow) self.macdHist_window.Add(macd_hist) self.macdSignal_window.Add(signal) self.macdDelta_window.Add(delta) self.macd_stochfast_window.Add(macd_stochfast) self.macdStochFastWindow.Add(macd_stochfast) self.macd_stochk_window.Add(macd_stochk) self.macdStochKWindow.Add(macd_stochk) self.macd_stochd_window.Add(macd_stochd) self.macdStochDWindow.Add(macd_stochd) if self.macd_window.IsReady: macd_lst = list(self.macd_window) macdhist_lst = list(self.macdHist_window) macdfast_lst = list(self.macdFast_window) macdslow_lst = list(self.macdSlow_window) macdsignal_lst = list(self.macdSignal_window) macddelta_lst = list(self.macdDelta_window) macdstochfast_lst = list(self.macd_stochfast_window) macdstochk_lst = list(self.macd_stochk_window) macdstochd_lst = list(self.macd_stochd_window) cur_macd, pre_macd, lst_macd = macd_lst[-1], macd_lst[-2], macd_lst[-3] cur_macd_fast, pre_macd_fast, lst_macd_fast = macdfast_lst[-1], macdfast_lst[-2], macdfast_lst[-3] cur_macd_slow, pre_macd_slow, lst_macd_slow = macdslow_lst[-1], macdslow_lst[-2], macdslow_lst[-3] cur_macd_hist, pre_macd_hist, lst_macd_hist = macdhist_lst[-1], macdhist_lst[-2], macdhist_lst[-3] cur_signal, pre_signal, lst_signal = macdsignal_lst[-1], macdsignal_lst[-2], macdsignal_lst[-3] cur_delta, pre_delta, lst_delta = macddelta_lst[-1], macddelta_lst[-2], macddelta_lst[-3] cur_macdstochfast, pre_macdstochfast, lst_macdstochfast = macdstochfast_lst[-1], macdstochfast_lst[-2], macdstochfast_lst[-3] cur_macdstochk, pre_macdstochk, lst_macdstochk = macdstochk_lst[-1], macdstochk_lst[-2], macdstochk_lst[-3] cur_macdstochd, pre_macdstochd, lst_macdstochd = macdstochd_lst[-1], macdstochd_lst[-2], macdstochd_lst[-3] cond1 = ((cur_macd_hist-cur_delta)>=0.0025) and (cur_macd >= cur_signal*self.tolerance) and (cur_macdstochfast >= cur_macdstochk*self.tolerance) and (cur_macdstochk >= cur_macdstochd*self.tolerance) cond2 = (cur_macd >= pre_macd*self.tolerance) and (cur_macd_fast >= pre_macd_fast*self.tolerance) and (cur_macd_hist >= pre_macd_hist*self.tolerance) and (cur_signal >= pre_signal*self.tolerance) cond3 = (pre_macd >= lst_macd*self.tolerance) and (pre_macd_fast >= lst_macd_fast*self.tolerance) and (pre_macd_hist >= lst_macd_hist*self.tolerance) and (pre_signal >= lst_signal*self.tolerance) cond4 = ((cur_macd_hist-cur_delta) <= -0.0025) and (cur_macd <= cur_signal*self.tolerance) and (cur_macdstochfast <= cur_macdstochk*self.tolerance) and (cur_macdstochk <= cur_macdstochd*self.tolerance) cond5 = (cur_macd <= pre_macd*self.tolerance) and (cur_macd_fast <= pre_macd_fast*self.tolerance) and (cur_macd_hist <= pre_macd_hist*self.tolerance) and (cur_signal <= pre_signal*self.tolerance) cond6 = (pre_macd <= lst_macd*self.tolerance) and (pre_macd_fast <= lst_macd_fast*self.tolerance) and (pre_macd_hist <= lst_macd_hist*self.tolerance) and (pre_signal <= lst_signal*self.tolerance) hh_macd, ll_macd = calc_divergence(macd_lst) hh_macdhist, ll_macdhist = calc_divergence(macdhist_lst) hh_macdfast, ll_macdfast = calc_divergence(macdfast_lst) hh_macdslow, ll_macdslow = calc_divergence(macdslow_lst) hh_macdsignal, ll_macdsignal = calc_divergence(macdsignal_lst) hh_macdstochfast, ll_macdstochfast = calc_divergence(macdstochfast_lst) hh_macdstochk, ll_macdstochk = calc_divergence(macdstochk_lst) hh_macdstochd, ll_macdstochd = calc_divergence(macdstochd_lst) cond7 = hh_macd, hh_macdhist, hh_macdfast, hh_macdslow, hh_macdsignal, hh_macdstochfast, hh_macdstochk, hh_macdstochd cond8 = ll_macd, ll_macdhist, ll_macdfast, ll_macdslow, ll_macdsignal, ll_macdstochfast, ll_macdstochk, ll_macdstochd if (cond1 and cond7) and (cond2 and cond3): self.macd_uptrend = True if (cond4 and cond8) and (cond5 and cond6): self.macd_downtrend = True exit = self.macdStochFastWindow.crossedBelow(self.macdStochKWindow) and self.macdStochKWindow.crossedBelow(self.macdStochDWindow) entry = self.macdStochFastWindow.crossedAbove(self.macdStochKWindow) and self.macdStochKWindow.crossedAbove(self.macdStochDWindow) if algorithm.Portfolio[symbol].Invested: if exit: self.macd_exit_signal = True if not algorithm.Portfolio[symbol].Invested: if entry: self.macd_entry_signal = True def roc_calc(obj): obj_lst = list(obj) output_lst = list() for i in range(-1, -len(obj_lst)+1, -1): if obj_lst[i-1] != 0: val = round((obj_lst[i] - obj_lst[i-1])/obj_lst[i-1], 4) else: val = 0 output_lst.append(val) return output_lst self.roc_window.Add(round(float(statistics.median([self.roc.Current.Value, self.roc_fast.Current.Value, self.roc_med.Current.Value, self.roc_long.Current.Value])), 4)) if self.roc_window.IsReady: val = statistics.median(roc_calc(self.roc_window)) roc_sum, roc_len = sum(list(self.roc_window)), len(list(self.roc_window)) self.roc_slope = round(float(roc_sum)/roc_len, 4) vol_sum, vol_len = sum(list(self.roc_window)[-3:-1]), len(list(self.roc_window)[-3:-1]) self.roc_fast_slope = round(float(vol_sum)/vol_len, 4) self.quick_up = all(x > 0.0 for x in [self.roc_fast_slope, self.volSignal_quick.Current.Value]) self.quick_down = all(x < 0.0 for x in [self.roc_fast_slope, self.volSignal_quick.Current.Value]) def hh_ll_calc(obj): x = np.array(list(obj)) local_maxima = argrelextrema(x, np.greater)[0] local_minima = argrelextrema(x, np.less)[0] if x[-1] > x[-2]: x = np.append(x, len(x) - 1) elif x[-1] > x[-2]: x = np.append(x, len(x) - 1) hh_all = all(x[local_maxima][i] < x[local_maxima][i+1] for i in range(len(local_maxima)-1)) ll_all = all(x[local_minima][i] > x[local_minima][i+1] for i in range(len(local_minima)-1)) return hh_all, ll_all self.rocSum_window.Add(round(float(sum([self.roc.Current.Value, self.roc_fast.Current.Value, self.roc_med.Current.Value, self.roc_long.Current.Value])), 4)) self.roclen_window.Add(round(float(statistics.median([self.roc.Current.Value, self.roc_fast.Current.Value, self.roc_med.Current.Value, self.roc_long.Current.Value])), 4)) if self.rocSum_window.IsReady: self.hh_all, self.ll_all = hh_ll_calc(self.roclen_window) self.hh_sum, self.ll_sum = hh_ll_calc(self.rocSum_window) self.vol_window.Add(round(float(statistics.median([self.vol_roc.Current.Value, self.vol_roc_fast.Current.Value, self.vol_roc_med.Current.Value, self.vol_roc_long.Current.Value])), 4)) if self.vol_window.IsReady: val = statistics.median(roc_calc(self.vol_window)) vol_sum, vol_len = sum(list(self.vol_window)), len(list(self.vol_window)) self.vol_slope = round(float(vol_sum)/vol_len, 4) vol_sum, vol_len = sum(list(self.vol_window)[-3:-1]), len(list(self.vol_window)[-3:-1]) self.vol_fast_slope = round(float(vol_sum)/vol_len, 4) self.roc_prices_window.Add(round(statistics.median([self.roc.Current.Value, self.roc_fast.Current.Value, self.roc_med.Current.Value, self.roc_long.Current.Value]), 4)) self.roc_prices_lev_window.Add(round(statistics.median([self.roc.Current.Value, self.roc_fast.Current.Value, self.roc_med.Current.Value]), 4)) self.roc_volume_window.Add(round(statistics.median([self.vol_roc.Current.Value, self.vol_roc_fast.Current.Value, self.vol_roc_med.Current.Value, self.vol_roc_long.Current.Value]), 4)) self.prices_window.Add(row['close']) if self.prices_window.IsReady and self.roc_prices_window.IsReady: prices = list(self.roc_prices_window) volumes = list(self.roc_volume_window) frames = [i for i in range(-2, -21, -2)] frames_ = [i for i in range(-1, -21, -1)] prices_lev = list(self.roc_prices_lev_window) _frames = [i for i in range(-1, -3, -1)] v1 = round(statistics.median([round(float(prices[i] - prices[i-5]/ prices[i-5]), 4) if prices[i-5] != 0 else 0 for i in frames]), 4) v11 = round(statistics.median([round(float(prices[i] - prices[i-5]/ prices[i-5]), 4) if prices[i-5] != 0 else 0 for i in frames_]), 4) v1_mom = round(statistics.median([round(float(prices_lev[i] - prices_lev[i-1]/ abs(abs(i)+(i-1))), 4) if abs(abs(i)+(i-1)) != 0 else 0 for i in _frames]), 4) self.median_roc = v1 if (v1 > v11) else -1 self.median_roc_momentum = v1_mom self.median_vol = round(statistics.median([round(float(volumes[i] - volumes[i-5]/ volumes[i-5]), 4) if volumes[i-5] != 0 else 0 for i in frames]), 4) C = list(self.prices_window) avg = sum(list(self.prices_window))/len(list(self.prices_window)) self.volatility = float(np.sqrt(252)*reduce(lambda a,b:a+abs(avg-b),C,0)/len(C))/C[-1] self.williamsWindow.Add(round(statistics.median([self.williamsPR.Current.Value, self.williamsPR_slow.Current.Value]), 4)) if self.williamsWindow.IsReady: williams = list(self.williamsWindow) w_length = len(williams) frames = [i for i in range(-1, (w_length*-1)+1, -1)] self.williams_median_roc = round(statistics.median([round(float(williams[i] - williams[i-1]/ williams[i-1]), 4) if williams[i-1] != 0 else 0 for i in frames]), 4) self.williams_median = round(statistics.median(williams), 4) if self.williamsPR.IsReady and self.williamsPR_slow.IsReady: self.williamsPR_window.Add(self.williamsPR.Current.Value) self.williamsPRWindow.Add(self.williamsPR.Current.Value) self.williamsPR_slow_window.Add(self.williamsPR_slow.Current.Value) self.williamsPR_slowWindow.Add(self.williamsPR_slow.Current.Value) if self.williamsPR_window.IsReady and self.williamsPRWindow.IsReady and self.williamsPR_slow_window.IsReady and self.williamsPR_slowWindow.IsReady: wills_lst = list(self.williamsPR_window) willss_lst = list(self.williamsPR_slow_window) cur_wills, pre_wills, lst_wills = wills_lst[-1], wills_lst[-2], wills_lst[-3] cur_willss, pre_willss, lst_willss = willss_lst[-1], willss_lst[-2], willss_lst[-3] cond1 = (cur_wills >= cur_willss*self.tolerance) cond2 = (cur_wills >= pre_wills*self.tolerance) and (cur_willss >= pre_willss*self.tolerance) cond3 = (pre_wills >= lst_wills*self.tolerance) and (pre_willss >= lst_willss*self.tolerance) cond4 = (cur_wills <= cur_willss*self.tolerance) cond5 = (cur_wills <= pre_wills*self.tolerance) and (cur_willss <= pre_willss*self.tolerance) cond6 = (pre_wills <= lst_wills*self.tolerance) and (pre_willss <= lst_willss*self.tolerance) hh_wills, ll_wills = calc_divergence(wills_lst) hh_willss, ll_willss = calc_divergence(willss_lst) cond7 = hh_wills, hh_willss cond8 = ll_wills, ll_willss if (cond1 and cond7) and (cond2 and cond3): self.williams_uptrend = True if (cond4 and cond8) and (cond5 and cond6): self.williams_downtrend = True exit = self.williamsPRWindow.crossedBelow(self.williamsPR_slowWindow) entry = self.williamsPRWindow.crossedAbove(self.williamsPR_slowWindow) if algorithm.Portfolio[symbol].Invested: if exit: self.williams_exit_signal = True if not algorithm.Portfolio[symbol].Invested: if entry: self.williams_entry_signal = True self.high_window.Add(row['high']) self.low_window.Add(row['low']) if self.high_window.IsReady and self.low_window.IsReady and self.prices_window.IsReady: close = list(self.prices_window) todayvol = np.std(close[1:31]) yesterdayvol = np.std(close[0:30]) deltavol = (todayvol - yesterdayvol) / todayvol self.lookback = round(self.lookback * (1 + deltavol)) # Account for upper/lower limit of lockback length if self.lookback > self.ceiling: self.lookback = self.ceiling elif self.lookback < self.floor: self.lookback = self.floor high = list(self.high_window) low = list(self.low_window) # Buy in case of breakout breakout_condition1 = (algorithm.Securities[symbol].Close >= max(high[:-1])) if breakout_condition1: self.breakout = True breakdown_condition1 = (algorithm.Securities[symbol].Close >= min(low[:-1])) if breakdown_condition1: self.breakdown = True fast = self.fast.Current.Value slow = self.slow.Current.Value fastBar = TradeBar(index, fast, fast, fast, fast, 0) self.stochasticFast.Update(fastBar) slowBar = TradeBar(index, slow, slow, slow, slow, 0) self.stochasticSlow.Update(slowBar) if self.stochasticFast.IsReady and self.stochasticSlow.IsReady: fast_stoch = self.stochasticFast.FastStoch.Current.Value fast_stochk = self.stochasticFast.StochK.Current.Value fast_stochd = self.stochasticFast.StochD.Current.Value slow_stoch = self.stochasticSlow.FastStoch.Current.Value slow_stochk = self.stochasticSlow.StochK.Current.Value slow_stochd = self.stochasticSlow.StochD.Current.Value median_roc = round(statistics.median([self.roc.Current.Value, self.roc_fast.Current.Value, self.roc_med.Current.Value, self.roc_long.Current.Value]), 4) fast_cond = ((fast >= fast_stochk*self.tolerance) and (fast_stoch >= fast_stochk*self.tolerance) and (fast_stochk >= fast_stochd*self.tolerance)) slow_cond = ((slow >= slow_stochk*self.tolerance) and (slow_stoch >= slow_stochk*self.tolerance) and (slow_stochk >= slow_stochd*self.tolerance)) self.is_uptrend = ((fast) >= slow*self.tolerance) and (row['close'] >= slow*self.tolerance) and fast_cond and slow_cond fast_cond = ((fast <= fast_stochk*self.tolerance) and (fast_stoch <= fast_stochk*self.tolerance) and (fast_stochk <= fast_stochd*self.tolerance)) slow_cond = ((slow <= slow_stochk*self.tolerance) and (slow_stoch <= slow_stochk*self.tolerance) and (slow_stochk <= slow_stochd*self.tolerance)) self.is_downtrend = ((fast) <= slow*self.tolerance) and (row['close'] <= slow*self.tolerance) and fast_cond and slow_cond if self.is_uptrend: # triangle formula # base * height * 0.5 self.scale = round(float(fast - slow) / ((fast+slow)/2.0), 4) if (fast+slow) != 0.0 else 0 else: self.scale = 0.00 if self.trix.IsReady: trix = self.trix.Current.Value trixBar = TradeBar(index, trix, trix, trix, trix, 0) self.stochasticTrix.Update(trixBar) if self.stochasticTrix.IsReady: self.trixFastStoch_window.Add(self.stochasticTrix.FastStoch.Current.Value) self.trixStochFastWindow.Add(self.stochasticTrix.FastStoch.Current.Value) self.trixStochK_window.Add(self.stochasticTrix.StochK.Current.Value) self.trixStochKWindow.Add(self.stochasticTrix.StochK.Current.Value) self.trixStochD_window.Add(self.stochasticTrix.StochD.Current.Value) self.trixStochDWindow.Add(self.stochasticTrix.StochD.Current.Value) if self.trixFastStoch_window.IsReady: trix_lst = list(self.trixFastStoch_window) trixfast_lst = list(self.trixFastStoch_window) trixstochk_lst = list(self.trixStochK_window) trixstochd_lst = list(self.trixStochD_window) cur_trix, pre_trix, lst_trix = trix_lst[-1], trix_lst[-2], trix_lst[-3] cur_fast, pre_fast, lst_fast = trixfast_lst[-1], trixfast_lst[-2], trixfast_lst[-3] cur_stochk, pre_stochk, lst_stochk = trixstochk_lst[-1], trixstochk_lst[-2], trixstochk_lst[-3] cur_stochd, pre_stochd, lst_stochd = trixstochd_lst[-1], trixstochd_lst[-2], trixstochd_lst[-3] cond1 = (cur_trix >= cur_stochk*self.tolerance) and (cur_fast >= cur_stochk*self.tolerance) and (cur_stochk >= cur_stochd*self.tolerance) cond2 = (cur_trix >= pre_trix*self.tolerance) and (cur_fast >= pre_fast*self.tolerance) and (cur_stochk >= pre_stochk*self.tolerance) and (cur_stochd >= pre_stochd*self.tolerance) cond3 = (pre_trix >= lst_trix*self.tolerance) and (pre_fast >= lst_fast*self.tolerance) and (pre_stochk >= lst_stochk*self.tolerance) and (pre_stochd >= lst_stochd*self.tolerance) cond4 = (cur_trix <= cur_stochk*self.tolerance) and (cur_fast <= cur_stochk*self.tolerance) and (cur_stochk <= cur_stochd*self.tolerance) cond5 = (cur_trix <= pre_trix*self.tolerance) and (cur_fast <= pre_fast*self.tolerance) and (cur_stochk <= pre_stochk*self.tolerance) and (cur_stochd <= pre_stochd*self.tolerance) cond6 = (pre_trix <= lst_trix*self.tolerance) and (pre_fast <= lst_fast*self.tolerance) and (pre_stochk <= lst_stochk*self.tolerance) and (pre_stochd <= lst_stochd*self.tolerance) hh_trix, ll_trix = calc_divergence(trix_lst) hh_trixfast, ll_trixfast = calc_divergence(trixfast_lst) hh_trixk, ll_trixk = calc_divergence(trixstochk_lst) hh_trixd, ll_trixd = calc_divergence(trixstochd_lst) cond7 = hh_trix, hh_trixfast, hh_trixk, hh_trixd cond8 = ll_trix, ll_trixfast, ll_trixk, ll_rsid if (cond1 and cond7) and (cond2 and cond3): self.trix_uptrend = True if (cond4 and cond8) and (cond5 and cond6): self.trix_downtrend = True exit = self.trixStochFastWindow.crossedBelow(self.trixStochKWindow) and self.trixStochKWindow.crossedBelow(self.trixStochDWindow) entry = self.trixStochFastWindow.crossedAbove(self.trixStochKWindow) and self.trixStochKWindow.crossedAbove(self.trixStochDWindow) if algorithm.Portfolio[symbol].Invested: if exit: self.trix_exit_signal = True if not algorithm.Portfolio[symbol].Invested: if entry: self.trix_entry_signal = True self.kalWindow.Add(self.kalFilter.Value) self.kalWindowLow.Add(self.kalFilterLow.Value) self.kalWindowHigh.Add(self.kalFilterHigh.Value) self.priceWindow.Add(median_price) self.priceWindowLow.Add(algorithm.Securities[symbol].Low) self.priceWindowHigh.Add(algorithm.Securities[symbol].High) if self.kalFilterLow.IsReady: exit = self.priceWindowLow.crossedBelow(self.kalWindowLow) and self.priceWindowHigh.crossedBelow(self.kalWindowHigh) and self.priceWindow.crossedBelow(self.kalWindow) entry = self.priceWindowLow.crossedAbove(self.kalWindowLow) and self.priceWindowHigh.crossedAbove(self.kalWindowHigh) and self.priceWindow.crossedAbove(self.kalWindow) if algorithm.Portfolio[symbol].Invested: if exit: self.exit_signal = True if not algorithm.Portfolio[symbol].Invested: if entry: self.entry_signal = True # VPN Indicator iATR = 0.1 ema_smooth = 3 vp = 0.0 vn = 0.0 vtot = 0.0 dist = self.atr.Current.Value * iATR self.vpn_vol_window.Add(row['volume']) self.vpn_hlc_window.Add(round(statistics.median([row['high'], row['low'], row['close']]), 4)) if self.vpn_vol_window.IsReady and self.vpn_hlc_window.IsReady: vpn_vol_window = list(self.vpn_vol_window) vpn_hlc_window = list(self.vpn_hlc_window) for i in range(-1, -self.vpn_period, -1): if (vpn_hlc_window[i] >= vpn_hlc_window[i-1] + dist): vp += vpn_vol_window[i] elif (vpn_hlc_window[i] <= vpn_hlc_window[i-1] - dist): vn += vpn_vol_window[i] vtot += vpn_vol_window[i] vpn_val = (((vp - vn) / (vtot/self.vpn_period)) / self.vpn_period) * 100 self.vpn_lst.Add(vpn_val) if self.vpn_lst.IsReady: vpn_ema = pd.DataFrame(list(self.vpn_lst)).ewm(span=ema_smooth, adjust=False).mean().iloc[-1][0] vpn_scale = self.vpn_lst[-1] vpnIndicator = ((vpn_scale) >= (vpn_ema*self.tolerance)) and ((vpn_scale) >= (self.vpn_lst[-2]*self.tolerance)) hh_vpn, ll_vpn = calc_divergence(self.vpn_lst) self.vpnIndicator = vpnIndicator and hh_vpn and (not ll_vpn) if self.vpnIndicator: cur_vpn, cur_vpn_ema = vpn_scale, vpn_ema low_vpn, low_vpn_ema = min(self.vpn_lst), min(pd.DataFrame(list(self.vpn_lst)).ewm(span=ema_smooth, adjust=False).mean().iloc[-1]) vpnScale = round(float(cur_vpn - cur_vpn_ema) / ((low_vpn + low_vpn_ema) / 2.0), 4) self.vpnScale = vpnScale else: self.vpnScale = 0.00 # Candles cndl_coef = float(sum([self.cndl_abandonedbaby.Current.Value, self.cndl_advanceblock.Current.Value, self.cndl_belthold.Current.Value, self.cndl_breakway.Current.Value, self.cndl_closingmarubozu.Current.Value, self.cndl_concealedbabyswallow.Current.Value, self.cndl_counterattack.Current.Value, self.cndl_darkcloudcover.Current.Value, self.cndl_doji.Current.Value, self.cndl_dojistar.Current.Value, self.cndl_dragonflydoji.Current.Value, self.cndl_engulfing.Current.Value, self.cndl_eveningdojistar.Current.Value, self.cndl_eveningstar.Current.Value, self.cndl_gapsidebysidewhite.Current.Value, self.cndl_gravestonedoji.Current.Value, self.cndl_hammer.Current.Value, self.cndl_hangingman.Current.Value, self.cndl_harami.Current.Value, self.cndl_haramicross.Current.Value, self.cndl_highwavecandle.Current.Value, self.cndl_hikkake.Current.Value, self.cndl_hikkakemodified.Current.Value, self.cndl_homingpigeon.Current.Value, self.cndl_identicalthreecrows.Current.Value, self.cndl_inneck.Current.Value, self.cndl_invertedhammer.Current.Value, self.cndl_kicking.Current.Value, self.cndl_kickingbylength.Current.Value, self.cndl_ladderbottom.Current.Value, self.cndl_longleggeddoji.Current.Value, self.cndl_longlinecandle.Current.Value, self.cndl_marubozu.Current.Value, self.cndl_mathold.Current.Value, self.cndl_matchinglow.Current.Value, self.cndl_morningdojistar.Current.Value, self.cndl_morningstar.Current.Value, self.cndl_onneck.Current.Value, self.cndl_pierce.Current.Value, self.cndl_rickshawman.Current.Value, self.cndl_risefallthreemethods.Current.Value, self.cndl_separatinglines.Current.Value, self.cndl_shootingstar.Current.Value, self.cndl_shortlinecandle.Current.Value, self.cndl_spinningtop.Current.Value, self.cndl_stalledpattern.Current.Value, self.cndl_sticksandwich.Current.Value, self.cndl_takuri.Current.Value, self.cndl_tasukigap.Current.Value, self.cndl_threeblackcrows.Current.Value, self.cndl_threeinside.Current.Value, self.cndl_threelinest.Current.Value, self.cndl_threeoutside.Current.Value, self.cndl_threestarsinsouth.Current.Value, self.cndl_threewhitesoldiers.Current.Value, self.cndl_thrusting.Current.Value, self.cndl_tristar.Current.Value, self.cndl_twocrows.Current.Value, self.cndl_uniquethreeriver.Current.Value, self.cndl_updowngapthreemethods.Current.Value, self.cndl_upsidegaptwocrows.Current.Value])) self.candleContainer.Add(cndl_coef) self.candleWindow.Add(cndl_coef) if self.candleContainer.IsReady: cndl_avg = statistics.median(list(self.candleContainer)) self.candleavgWindow.Add(cndl_avg) if self.candleWindow.IsReady and self.candleavgWindow.IsReady: exit = self.candleWindow.crossedBelow(self.candleavgWindow) entry = self.candleWindow.crossedAbove(self.candleavgWindow) if algorithm.Portfolio[symbol].Invested: if exit: self.cndl_downtrend = True if not algorithm.Portfolio[symbol].Invested: if entry: self.cndl_uptrend = True
from System import * from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Data import * from QuantConnect.Data.Market import * from QuantConnect.Orders import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Portfolio import * from QuantConnect.Indicators.CandlestickPatterns import * import numpy as np import tweepy import statistics from pykalman import KalmanFilter from FilterIndicators import * from SmartRollingWindow import * from symbol_data_functions import SymbolData # import datetime from datetime import timedelta, datetime class ScheduledExecutionModel(ExecutionModel): '''Execution model that submits orders while the current market price is more favorable that the current volume weighted average price.''' def __init__(self, algorithm, *args, **kwargs): super().__init__() '''Initializes a new instance of the VolumeWeightedAveragePriceExecutionModel class''' self.targetsCollection = PortfolioTargetCollection() self.deviations = 2 self.symbolData = {} self.data = {} # Gets or sets the maximum order quantity as a percentage of the current bar's volume. # This defaults to 0.01m = 1%. For example, if the current bar's volume is 100, # then the maximum order size would equal 1 share. self.MaximumOrderQuantityPercentVolume = 0.1 # Gets or sets the maximum spread compare to current price in percentage. self.acceptingSpreadPercent = 0.005 def Execute(self, algorithm, targets): '''Executes market orders if the standard deviation of price is more than the configured number of deviations in the favorable direction. Args: algorithm: The algorithm instance targets: The portfolio targets''' # update the complete set of portfolio targets with the new targets self.targetsCollection.AddRange(targets) # for performance we check count value, OrderByMarginImpact and ClearFulfilled are expensive to call if self.targetsCollection.Count > 0: for target in self.targetsCollection.OrderByMarginImpact(algorithm): symbol = target.Symbol # calculate remaining quantity to be ordered unorderedQuantity = OrderSizing.GetUnorderedQuantity(algorithm, target) # fetch our symbol data containing our VWAP indicator data = self.symbolData.get(symbol, None) if data is None: return # check order entry conditions if self.PriceIsFavorable(data, unorderedQuantity):# or self.SpreadIsFavorable(data, unorderedQuantity): # adjust order size to respect maximum order size based on a percentage of current volume orderSize = OrderSizing.GetOrderSizeForPercentVolume(data.Security, self.MaximumOrderQuantityPercentVolume, unorderedQuantity) if (data.Security.BidPrice < data.VWAP): price_est = round(statistics.median([data.VWAP, data.Security.BidPrice]), 4) elif (data.Security.AskPrice > data.VWAP): price_est = round(statistics.median([data.VWAP, data.Security.AskPrice]), 4) max_quantity = algorithm.CalculateOrderQuantity(symbol, 0.95) # suggested amount divided by the total possible amount try: order_percent = round(float(orderSize/max_quantity), 4) except: if max_quantity == 0: order_percent = 0.0 else: cash = algorithm.Portfolio.Cash max_quantity = int(cash/price_est) order_percent = round(float(orderSize/max_quantity), 4) if ((orderSize != 0) and (abs(order_percent) >= 0.1)): coef = abs(order_percent) * 0.5 if algorithm.Portfolio[symbol].Invested: if coef <= 0.25: coef = int(abs(float(order_percent))/0.025)*10 signals = (self.data[symbol].breakout or (self.data[symbol].vpnIndicator and (self.data[symbol].is_uptrend and self.data[symbol].trix_uptrend or (self.data[symbol].entry_signal and self.data[symbol].rsi_entry_signal and self.data[symbol].macd_entry_signal and self.data[symbol].williams_entry_signal and self.data[symbol].trix_entry_signal and self.data[symbol].quick_up))) or (self.data[symbol].macd_uptrend and self.data[symbol].rsi_uptrend)) down_signals = ((self.data[symbol].breakdown or ((not self.data[symbol].vpnIndicator) and (self.data[symbol].is_downtrend and self.data[symbol].trix_downtrend) or (self.data[symbol].exit_signal and self.data[symbol].rsi_exit_signal and self.data[symbol].macd_exit_signal and self.data[symbol].williams_exit_signal and self.data[symbol].trix_exit_signal and self.data[symbol].quick_down))) or (self.data[symbol].macd_downtrend and self.data[symbol].rsi_downtrend)) slope_cond = (self.data[symbol].roc_slope > 0.00) and (self.data[symbol].vol_slope > 0.00) slope_down = (self.data[symbol].roc_slope < 0.00) and (self.data[symbol].vol_slope < 0.00) if signals and slope_cond: coef = coef * 30 elif signals or slope_cond: coef = coef * 10 elif slope_down or down_signals: coef = 0 orderSize = OrderSizing.GetOrderSizeForPercentVolume(data.Security, self.MaximumOrderQuantityPercentVolume*coef, unorderedQuantity) projected_cost = round(price_est * orderSize, 4) * 1.0 if (algorithm.Portfolio.Cash > projected_cost) and (orderSize != 0): algorithm.MarketOrder(symbol, orderSize) self.targetsCollection.ClearFulfilled(algorithm) def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for removed in changes.RemovedSecurities: # clean up removed security data if removed.Symbol in self.symbolData: if self.IsSafeToRemove(algorithm, removed.Symbol): data = self.symbolData.pop(removed.Symbol) algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) if removed.Symbol in self.data: if self.IsSafeToRemove(algorithm, removed.Symbol): data = self.data.pop(removed.Symbol) algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) for added in changes.AddedSecurities: if added.Symbol not in self.symbolData: self.data[added.Symbol] = SymbolData(algorithm, added.Symbol, Resolution.Daily) self.symbolData[added.Symbol] = SymbolDataExecuteModel(algorithm, added) def PriceIsFavorable(self, data, unorderedQuantity): '''Determines if the current price is favorable in the favorable direction.''' sma = data.SMA.Current.Value deviations = self.deviations * data.STD.Current.Value if unorderedQuantity > 0: if (data.Security.BidPrice < data.VWAP) or (data.Security.BidPrice < sma - deviations): return True else: if (data.Security.AskPrice > data.VWAP) or (data.Security.AskPrice > sma + deviations): return True return False def SpreadIsFavorable(self, data, unorderedQuantity): '''Determines if the spread is in desirable range.''' # Price has to be larger than zero to avoid zero division error, or negative price causing the spread percentage < 0 by error # Has to be in opening hours of exchange to avoid extreme spread in OTC period return data.Security.Price > 0 and data.Security.AskPrice > 0 and data.Security.BidPrice > 0 \ and (data.Security.AskPrice - data.Security.BidPrice) / data.Security.Price <= self.acceptingSpreadPercent def IsSafeToRemove(self, algorithm, symbol): '''Determines if it's safe to remove the associated symbol data''' # confirm the security isn't currently a member of any universe return not any([kvp.Value.ContainsMember(symbol) for kvp in algorithm.UniverseManager]) class SymbolDataExecuteModel: def __init__(self, algorithm, security): self.Security = security self.period = 8 self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, security.Resolution) name = algorithm.CreateIndicatorName(security.Symbol, "VWAP", security.Resolution) self.vwap = IntradayVwap(name) algorithm.RegisterIndicator(security.Symbol, self.vwap, self.Consolidator) smaName = algorithm.CreateIndicatorName(security.Symbol, f"SMA{self.period}", security.Resolution) self.SMA = SimpleMovingAverage(smaName, self.period) algorithm.RegisterIndicator(security.Symbol, self.SMA, self.Consolidator) stdName = algorithm.CreateIndicatorName(security.Symbol, f"STD{self.period}", security.Resolution) self.STD = StandardDeviation(stdName, self.period) algorithm.RegisterIndicator(security.Symbol, self.STD, self.Consolidator) roc_fName = algorithm.CreateIndicatorName(security.Symbol, f"ROC_F{self.period}", security.Resolution) # warmup our indicators by pushing history through the indicators history = algorithm.History(security.Symbol, 84, security.Resolution) if 'close' in history: for index, row in history.loc[security.Symbol].iterrows(): tradeBar = TradeBar(index, row['open'], row['high'], row['low'], row['close'], row['volume']) self.SMA.Update(index, row['close']) self.STD.Update(index, row['close']) @property def VWAP(self): return self.vwap.Value def dispose(self, algorithm): algorithm.SubscriptionManager.RemoveConsolidator(security.Symbol, self.consolidator) class IntradayVwap: '''Defines the canonical intraday VWAP indicator''' def __init__(self, name): self.Name = name self.Value = 0.0 self.lastDate = datetime.min self.sumOfVolume = 0.0 self.sumOfPriceTimesVolume = 0.0 @property def IsReady(self): return self.sumOfVolume > 0.0 def Update(self, input): '''Computes the new VWAP''' success, volume, averagePrice = self.GetVolumeAndAveragePrice(input) if not success: return self.IsReady # reset vwap on daily boundaries if self.lastDate != input.EndTime.date(): self.sumOfVolume = 0.0 self.sumOfPriceTimesVolume = 0.0 self.lastDate = input.EndTime.date() # running totals for Σ PiVi / Σ Vi self.sumOfVolume += volume self.sumOfPriceTimesVolume += averagePrice * volume if self.sumOfVolume == 0.0: # if we have no trade volume then use the current price as VWAP self.Value = input.Value return self.IsReady self.Value = self.sumOfPriceTimesVolume / self.sumOfVolume return self.IsReady def GetVolumeAndAveragePrice(self, input): '''Determines the volume and price to be used for the current input in the VWAP computation''' if type(input) is Tick: if input.TickType == TickType.Trade: return True, float(input.Quantity), float(input.LastPrice) if type(input) is TradeBar: if not input.IsFillForward: averagePrice = round(float(statistics.mean([input.Open, input.High, input.Low, input.Close])), 4) return True, float(input.Volume), averagePrice return False, 0.0, 0.0
from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import sys import tweepy from tweepy import OAuthHandler from time import sleep import json # Important - Don't name file 'tweepy.py' # Used below to supress problems and continue instead of try/except/continue from contextlib import suppress # --- # --------------------------------------------------------------------- # --- # # --- # --------------------------------------------------------------------- # --- # # Set True to follow a defined list of twitter users. # Set False to stream from all accounts based on defined keywords. FollowerMode = True # --- # --------------------------------------------------------------------- # --- # # --- # --------------------------------------------------------------------- # --- # # --- # ---------------------------------- # --- # # --- # ---- Follower Mode Dictionary ---- # --- # # --- # ---------------------------------- # --- # # Lookup Twitter ID's here http://gettwitterid.com/ by entering the accounts @Usernamehandle (without the @) # It doesn't care what you name them. The names are only displayed to the console. idsdict = {'TT3Private'} # --- # --------------------------------------------------------------------- # --- # # --- # --------------------------------------------------------------------- # --- # # --- # ------------------------------ # --- # # --- # ---- Search Mode Keywords ---- # --- # # --- # ------------------------------ # --- # # --- # ----------------- # --- # # --- # SEARCH BY KEYWORD # --- # # --- # ----------------- # --- # # Example # search = ['breaking news'] # --- # ---------- # --- # # --- # SEARCH ALL # --- # # --- # ---------- # --- # # [' '] and [''] yields no results. The only way to truly stream all of the tweets (unfiltered) # requires a connection to the firehose(https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/decahose.html), # which is granted only in specific use enterprise cases by Twitter. search = ['.','a','@','\'','this','to',':(','?','!','$', 'h','+','_','-','#','b','you', 'c',',','the', 'i','/','lol','at','this','need','and','RT', 'if','1', 'd','e','f','g'] # Feel free to expand on this. I believe there's a limit on how much you can add. # --- # -------------------- # --- # # --- # SEARCH BY USER INPUT # --- # # --- # -------------------- # --- # # search = [input('Enter keyword\n\n')] # --- # -------------------------------------------------------------- # --- # # --- # -------------------------------------------------------------- # --- # # --- # ---------------------- # --- # # --- # --- AUTHENTICATION --- # --- # # --- # ---------------------- # --- # consumer_key = self.GetParameter("Consumer_Api") consumer_secret = self.GetParameter("Consumer_Api_Secret") access_token = self.GetParameter("Access_Token") access_token_secret = self.GetParameter("Access_Token_Secret") auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) # --- # -------------------------------------------------------------- # --- # # --- # -------------------------------------------------------------- # --- # print('Listening for tweets...\n') if FollowerMode == True: # gets all IDs from 'idsdict' and converts them to strings ids = [str(i) for i in list(idsdict.values())] # Main Stream Listener Class class MyStreamListener(tweepy.StreamListener): global ids global FollowerMode tweets = 0 # on_status is a built in tweepy method to fetch tweets. # on_data is another one and shows more detailed information for analytical reasons, # but be aware that you will have to parse the json manually like data['text'], data['user']['location'], etc. # print out status or data(if using on_data) and run the script to fetch the full JSON to see everything that it can do. # You can find a good example of that here https://github.com/varadhbhatnagar/Emoyto def on_status(self, status): """ # Use this if you plan to use the json functionality below. # If you use this, tab the rest of this class below over by one indent(4 spaces) # with open ('tweets.json', 'a', encoding='utf-8') as f: # Supress errors so if that specific tweet has an issue for whatever reason, it will skip it. Similar to try/except. # Don't use this if you want to debug/look for issues. """ with suppress(Exception): userid = str(status.user.id) # "userid in ids" mentioned below removes all of the mentions and retweets and makes sure it only comes from the original account. # Tweepy has no built in way to exclude that to my knowledge based on stackoverflow answers. if FollowerMode == True and userid in ids: # You can do this for example - " if status.place.country == 'United States': ", # but most people don't have their country listed. status.user.location often shows 'state' or 'city, state' and/or country, # but their location is user set so it can really be something made up like 'outer space'. If it's that important, # you could always try and use an API to see if it's a valid location. print('-' * 80) # Prints the name for this ID that's defined in 'idsdict' with suppress(Exception): print(list(idsdict.keys())[list(idsdict.values()).index(int(userid))]) print('User: ' + status.user.screen_name) # Attempt to display location and/or country if it exists with suppress(Exception): if status.user.location != None and status.user.location != 'None': print('Location: ' + status.user.location) with suppress(Exception): print('Country: ' + status.place.country) # Checks to see if tweet is 'extended'/long. If it is, it will display the full tweet. try: text = status.extended_tweet['full_text'] except AttributeError: text = status.text print('Tweet: ' + text) sleep(0.015) elif FollowerMode == False: print('-' * 80) print('User: ' + status.user.screen_name) with suppress(Exception): if status.user.location != None and status.user.location != 'None': print('Location: ' + status.user.location) with suppress(Exception): print('Country: ' + status.place.country) try: text = status.extended_tweet['full_text'] except AttributeError: text = status.text print('Tweet: ' + text) # Prevents the display from hiccups and keeps the scrolling smooth when scanning all sleep(0.016) # --- # --------------------------------------------------------------------- # --- # # --- # --------------------------------------------------------------------- # --- # # Optional - Write tweet into json file. You can store just tweets for example # Make sure to un-comment the 'with f.open' above and tab the rest of the class below it. #json_str = json.dumps(status._json) #f.write(status.text + '\n') # --- # --------------------------------------------------------------------- # --- # # --- # --------------------------------------------------------------------- # --- # # # Optional - Print something out every certain number of tweets to show how many tweets have came through. # MyStreamListener.tweets += 1 # if MyStreamListener.tweets % 1000 == 0: # print(str(MyStreamListener.tweets) + ' Tweets') # for i in range(15): # print(f'|||||||||||||||||||||||||||||||||||----- {MyStreamListener.tweets} ------||||||||||||||||||||||||||||||||||||||| \n') # sleep(1) # Define the listener listener = MyStreamListener() stream = tweepy.Stream(auth, listener) if FollowerMode == True: stream.filter(follow=ids) else: stream.filter(languages=["en"], track = search )