Overall Statistics
Total Trades
340
Average Win
0.24%
Average Loss
-0.21%
Compounding Annual Return
7.466%
Drawdown
10.100%
Expectancy
0.405
Net Profit
24.112%
Sharpe Ratio
0.647
Probabilistic Sharpe Ratio
22.435%
Loss Rate
35%
Win Rate
65%
Profit-Loss Ratio
1.15
Alpha
0.07
Beta
-0.228
Annual Standard Deviation
0.085
Annual Variance
0.007
Information Ratio
-0.089
Tracking Error
0.155
Treynor Ratio
-0.241
Total Fees
$362.52
Estimated Strategy Capacity
$890000000.00
Lowest Capacity Asset
SPY R735QTJ8XC9X
# This code is provided for informational purposes only.
# Do NOT trade using it or you WILL loose money.

from SimpleLinearRegressionChannel import SimpleLinearRegressionChannel

class SimpleLinearRegressionChannelAlgorithm(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2016, 1, 1)
        self.SetEndDate(2018, 12, 31)
        self.SetCash(100000)

        self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol

        self.slrc = SimpleLinearRegressionChannel(self, 26, 26, 3.0)
        self.SetWarmUp(self.slrc.WarmUpPeriod, Resolution.Daily)
    
    def OnData(self, data):
        if data.ContainsKey(self.spy) and data[self.spy] is not None:
            self.slrc.Update(data[self.spy])
        else:
            return

        if not self.slrc.IsReady:
            return

        # Since our indicator is ready, we can use it to compare the current bar with the simple linear regression projection.
        (low, mid, high) = self.slrc.GetProjection()
        
        # self.Debug(f"({low}, {mid}, {high})")

        bar = data[self.spy]
        minBarBody = min(bar.Open, bar.Close)
        maxBarBody = max(bar.Open, bar.Close)
        posSlope = self.slrc.GetSlope() > 0.0

        if posSlope:
            if minBarBody > mid:
                self.SetHoldings(self.spy, 1)
            elif minBarBody > low:
                self.SetHoldings(self.spy, 0.7)
            elif minBarBody < low and maxBarBody > low:
                self.SetHoldings(self.spy, 0.3)
            elif maxBarBody < low:
                self.Liquidate(self.spy)
        else:
            if maxBarBody < mid:
                self.SetHoldings(self.spy, -1)
            elif maxBarBody < high:
                self.SetHoldings(self.spy, -0.7)
            elif maxBarBody > high and minBarBody < high:
                self.SetHoldings(self.spy, -0.3)
            elif minBarBody > high:
                self.Liquidate(self.spy)
# This code is provided for informational purposes only.
# Do NOT trade using it or you WILL loose money.

from collections import deque
from statistics import stdev

class SimpleLinearRegressionChannel(PythonIndicator):
    def __init__(self, algorithm: QCAlgorithm, base_period: int, projection_period: int, channel_width: float):
        super().__init__()
        assert base_period > 0, f"{self.__init__.__qualname__}: base_period must be greater than 0."
        assert projection_period > 0, f"{self.__init__.__qualname__}: projection_period must be greater than 0."
        assert channel_width >= 0.0, f"{self.__init__.__qualname__}: channel_width must be greater than or equal to 0.0."
        if base_period < 10:
            algorithm.Log(f"Warning - {self.__init__.__qualname__}: base_period is less than 10. This is very few data points to compute a simple linear regression.")
        self._algorithm = algorithm
        self._base_period = base_period
        self._x = list(range(1, base_period + 1))
        self._x_sum = sum(self._x)
        self._x_mean = self._x_sum / base_period
        self._diffs_x_mean = [(x_i - self._x_mean) for x_i in self._x]
        self._B1_den = sum(pow(x_i, 2) for x_i in self._diffs_x_mean)
        self._projection_period = projection_period
        self._channel_width = channel_width
        self._stdev = None
        self.Value = None

        self._base_window = deque(maxlen=base_period)
        self._B0 = None
        self._B1 = None
        self._projection_window = deque(maxlen=projection_period)

        self._R_den_x = (base_period * sum(pow(x_i, 2) for x_i in self._x)) - pow(self._x_sum, 2)

        self.WarmUpPeriod = base_period

    @property
    def IsReady(self):
        return (len(self._base_window) == self._base_window.maxlen) and (len(self._projection_window) >= 1)

    def Update(self, _input):
        if len(self._base_window) != self._base_window.maxlen:
            self._base_window.append(_input.Close)
        else:
            projection_size = len(self._projection_window)
            if projection_size == 0:
                self._simple_linreg()
            if projection_size != self._projection_window.maxlen:
                self._projection_window.append(_input.Close)
            else:
                self._reset(_input)

    def _simple_linreg(self):
        y_mean = sum(self._base_window) / self._base_period

        B1_num = sum((x_j * y_j) for x_j, y_j in zip(self._diffs_x_mean, [(y_i - y_mean) for y_i in self._base_window]))
        self._B1 = B1_num / self._B1_den
        self._B0 = y_mean - (self._B1 * self._x_mean)

        self._stdev = stdev(self._base_window)

    def _reset(self, _input):
        self._base_window.clear()
        if self._base_period > self._projection_period:
            self._base_window.extend(self._projection_window)
            self._base_window.append(_input.Close)
            self._projection_window.clear()
        else:
            while len(self._base_window) != self._base_window.maxlen:
                self._base_window.append(self._projection_window.popleft())
            self._simple_linreg()
            self._projection_window.append(_input.Close)
    
    def GetSlope(self):
        if self.IsReady:
            return self._B1
        else:
            return None

    def GetProjection(self):
        if self.IsReady:
            x = self._base_period + len(self._projection_window)
            y = self._B0 + (self._B1 * x)
            channel = self._channel_width * self._stdev
            return (y - channel, y, y + channel)
        else:
            return (None, None, None)

    def GetCorrelationCoefficient(self):
        if self.IsReady:
            num = (self._base_period * sum((x_i * y_i) for x_i, y_i in zip(self._x, self._base_window))) - (self._x_sum * sum(self._base_window))
            den = math.sqrt(self._R_den_x * ((self._base_period * sum(pow(y_i, 2) for y_i in self._base_window)) - pow(sum(self._base_window), 2)))
            return num / den
        else:
            return None