Overall Statistics |
Total Trades 97 Average Win 8.28% Average Loss -1.96% Compounding Annual Return 18.282% Drawdown 14.400% Expectancy 3.029 Net Profit 1290.953% Sharpe Ratio 1.258 Probabilistic Sharpe Ratio 81.345% Loss Rate 23% Win Rate 77% Profit-Loss Ratio 4.23 Alpha 0.112 Beta 0.216 Annual Standard Deviation 0.102 Annual Variance 0.01 Information Ratio 0.3 Tracking Error 0.163 Treynor Ratio 0.596 Total Fees $298.91 Estimated Strategy Capacity $800000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 1.69% |
#region imports from AlgorithmImports import * #endregion import numpy as np from datetime import datetime import matplotlib.pyplot as plt from AlgorithmImports import * # ------------------------------------------------------------------------- STK = ['QQQ']; BND = ['TLT']; VOLA = 126; BASE_RET = 85; DAY = 85 ;LEV = 1.00 #855 LEV = 1.00 #85 LEV = 1.00; #85 PAIRS = ['SLV', 'GLD', 'XLI', 'XLU', 'DBB', 'UUP'] ; res = Resolution.Daily # ------------------------------------------------------------------------- class DualMomentumInOut(QCAlgorithm): def Initialize(self): self.SetStartDate(2008,1,1) #self.SetEndDate(2023,4,1) self.cap = 10000 #Settare il Capitale Iniziale self.SetCash(self.cap) self.AddEquity('SPY', res).Symbol self.SetBenchmark('SPY') self.STK = self.AddEquity('SPY', res).Symbol self.BND1 = self.AddEquity('IEF', res).Symbol self.BND2 = self.AddEquity('UUP', res).Symbol self.ASSETS = [self.STK, self.BND1, self.BND2] self.SLV = self.AddEquity('SLV', res).Symbol self.GLD = self.AddEquity('GLD', res).Symbol self.XLI = self.AddEquity('XLI', res).Symbol self.XLU = self.AddEquity('XLU', res).Symbol self.DBB = self.AddEquity('DBB', res).Symbol self.UUP = self.AddEquity('UUP', res).Symbol # self.WOOD = self.AddEquity('WOOD', res).Symbol #self.XLY = self.AddEquity('XLY', res).Symbol self.MKT = self.AddEquity('SPY', res).Symbol self.BNCH = self.AddEquity('QQQ', res).Symbol self.pairs = [ self.XLI, self.XLU, self.GLD, self.SLV, self.DBB, self.UUP] #self.TVC, self.TIP #self.WOOD, self.AddRiskManagement(MaximumDrawdownPercentPerSecurity(0.15)) self.bull = 1 self.count = 0 self.outday = 0 self.wt = {} self.real_wt = {} self.mkt = [] self.SetWarmUp(timedelta(350)) self.quandlCode = "RATEINF/INFLATION_USA" self.AddRiskManagement(MaximumDrawdownPercentPerSecurity(-0.10)) #self.AddRiskManagement(MaximumU) Quandl.SetAuthCode("hcm-xaeGb6haorprzgnh") self.cpi = self.AddData(QuandlCustomColumns, self.quandlCode, Resolution.Daily, TimeZones.NewYork).Symbol self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 100), #100), #1000), #1005 0), #100), #1000), #100100), #100), #1000), #1005 0), #100), #1000), #100 self.daily_check) symbols = [self.MKT] + self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, VOLA + 1, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(VOLA + 1):] def daily_check(self): current_inflation = self.Securities[self.cpi].Price self.Debug('{}'.format(current_inflation)) vola = (self.history[[self.MKT]].pct_change().std() * np.sqrt(252)) wait_days = int(vola * DAY) period = int((1.0 - vola) * BASE_RET) r = self.history.pct_change(period).iloc[-1] rGLD = round(((r[self.GLD] - r[self.SLV]) * 50), 100) rXLU = round(((r[self.XLU] - r[self.XLI]) * 50), 100) rUUP = round(((r[self.UUP] - r[self.DBB]) * 50), 100) # rWOOD = round(((r[self.GLD] - r[self.WOOD]) * 50), 100) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.10)) exit1 = (r[self.XLI] < r[self.XLU]) and (r[self.SLV] < r[self.GLD] )# and (r[self.DBB] < r[self.UUP]) exit2 = (r[self.XLI] < r[self.XLU]) and (r[self.SLV] < r[self.GLD]) and (r[self.DBB] < r[self.UUP]) #exit1 = (r[self.XLI] < r[self.XLU]) and (r[self.SLV] < r[self.GLD] and (r[self.WOOD] < r[self.GLD]))# and (r[self.DBB] < r[self.UUP]) #exit2 = (r[self.XLI] < r[self.XLU]) and (r[self.SLV] < r[self.GLD]) and (r[self.DBB] < r[self.UUP]) and (r[self.WOOD] < r[self.GLD]) if current_inflation > 5.6 : exit = exit1 else: exit = exit2 if exit: self.bull = False self.outday = self.count if self.count >= self.outday + wait_days: self.bull = True self.count += 1 self.Debug('{}'.format(VOLA-self.count)) if current_inflation > 5.6 : self.safe = self.BND2 else: self.safe = self.BND1 if not self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.safe else 0 if sec is self.safe else 0 self.trade() elif self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.STK else 0 self.trade() def trade(self): for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def OnEndOfDay(self): vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) period = int((1.0 - vola) * (BASE_RET)) r = self.history.pct_change(period).iloc[-1] rGLD = round(((r[self.GLD] - r[self.SLV]) * 50), 100) rXLU = round(((r[self.XLU] - r[self.XLI]) * 50), 100) rUUP = round(((r[self.UUP] - r[self.DBB]) * 50), 100) # rWOOD = round(((r[self.GLD] - r[self.WOOD]) * 50), 100) self.Plot('ROC', 'GOLD/SLV', rGLD) self.Plot('ROC', 'XLU/XLI', rXLU) self.Plot('ROC', 'UUP/DBB', rUUP) # self.Plot('ROC', 'GOLD/WOOD', rWOOD) vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) wait_days = int(vola * DAY) self.Plot('Wait_days', 'Days', wait_days) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 1)) def OnEndOfDayS(self): # Crea una istanza della classe CPIData come simbolo personalizzato mkt_price = self.Securities[self.BNCH].Close self.mkt.append(mkt_price) mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap self.Plot('Strategy Equity', 'QQQ', mkt_perf) class QuandlCustomColumns(PythonQuandl): def __init__(self): # Define ValueColumnName: cannot be None, Empty or non-existant column name self.ValueColumnName = "Value"