Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.02 Tracking Error 0.243 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") from System import * from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Data import * from QuantConnect.Data.Market import * from QuantConnect.Algorithm import * import numpy as np from datetime import datetime class MomentumOfMovingAverage(QCAlgorithm): def Initialize(self): self.SetStartDate(2009, 1, 1) #Set Start Date self.SetEndDate(2010, 1, 1) #Set End Date self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol period = 200 self.sma200 = SimpleMovingAverage(period) self.sma2 = SimpleMovingAverage(period) mom = MomentumPercent(period) # define an indicator that takes the output of the sma and pipes it into our delay indicator # get the momemntum of sma200 self.momSMA = IndicatorExtensions.Of(mom, self.sma200) self.RegisterIndicator(self.spy, self.momSMA, Resolution.Daily) # smooth out momentum #self.smoothMom = IndicatorExtensions.Of(self.sma2, self.momSMA) #self.RegisterIndicator(self.spy, self.smoothMom, Resolution.Daily) # OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. def OnData(self, data): if data[self.spy] is None: return close = data[self.spy].Close self.PlotIndicator("momSMA", self.momSMA) self.Plot("sma200", self.sma200) self.Plot("close", "Price", close)