import math
import pandas as pd
from io import StringIO
data_url = "https://www.dropbox.com/s/pwm8wlncayp1clh/trump_beta.csv?dl=1"
class CalibratedTransdimensionalProcessor(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 6, 1)
self.SetCash(100000)
self.symbols = self.get_symbols()
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverseSelection(ManualUniverseSelectionModel(self.symbols))
self.AddAlpha(TrumpBetaDiversificationModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetExecution(ImmediateExecutionModel())
def get_symbols(self):
constituents = pd.read_csv(StringIO(self.Download(data_url)), index_col="Date").columns
return [Symbol.Create(s, SecurityType.Equity, Market.USA) for s in constituents]
class TrumpBetaDiversificationModel:
def __init__(self):
self.thresh = 1/4
def Update(self, algorithm, slice):
insights = []
### Explain how to use custom data properly.
trump_beta = pd.Series({k: v.Value for k, v in slice.Get[TrumpBeta]().items()})
if len(trump_beta) < 250:
return insights
# slice["IBM"].
# @alexcatarino
low_trump_beta = abs(trump_beta).sort_values()[:math.floor(self.thresh*len(trump_beta))]
for security in low_trump_beta.keys():
#for security in trump_beta.keys(): # This is for the benchmark
insight = Insight(security, timedelta(7), InsightType.Price, InsightDirection.Up)
insights.append(insight)
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
algorithm.AddData(TrumpBeta, added.Symbol)
for removed in changes.RemovedSecurities:
algorithm.RemoveSecurity(removed.Symbol)
class TrumpBeta(PythonData):
def __init__(self):
self.columns = {}
def GetSource(self, config, date, isLive):
return SubscriptionDataSource(data_url, SubscriptionTransportMedium.RemoteFile);
def Reader(self, config, line, date, isLive):
data = line.split(',')
if not (line.strip() and line[0].isdigit()):
self.columns = {data[i]: i for i in range(0, len(data))}
return None
trump_beta = TrumpBeta()
trump_beta.Symbol = config.Symbol
## Explain this --
trump_beta.EndTime = pd.to_datetime(data[self.columns["Date"]]) + timedelta(days=1)
value = data[self.columns[config.Symbol.Value]]
if not value: return None
trump_beta.Value = float(value)
return trump_beta