Overall Statistics |
Total Trades 401 Average Win 1.08% Average Loss -0.87% Compounding Annual Return 23.731% Drawdown 22.900% Expectancy 1.083 Net Profit 769.700% Sharpe Ratio 1.642 Probabilistic Sharpe Ratio 93.093% Loss Rate 7% Win Rate 93% Profit-Loss Ratio 1.24 Alpha 0.221 Beta 0.252 Annual Standard Deviation 0.154 Annual Variance 0.024 Information Ratio 0.657 Tracking Error 0.194 Treynor Ratio 1 Total Fees $898.83 |
# Inspired by the theory here: # https://seekingalpha.com/article/4299701-leveraged-etfs-for-long-term-investing # https://www.quantconnect.com/forum/discussion/7708/using-levered-etfs-in-ira-10-years-24-cagr-1-56-sharpe/p1 class MultidimensionalTransdimensionalPrism(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 2, 1) # Earliest start date for all ETFs in universe 2/1/10 self.SetEndDate(2020, 3, 27) self.SetCash(100000) self.AddEquity("TQQQ", Resolution.Hour) # 3x QQQ self.AddEquity("UBT", Resolution.Hour) # 3x 20yr Treasury self.AddEquity("UST", Resolution.Hour) # 3x 10yr Treasury self.AddEquity("TVIX", Resolution.Hour) self.tkr = ["TQQQ", "UBT", "UST", "TVIX"] self.Schedule.On( self.DateRules.MonthStart("UST"), self.TimeRules.AfterMarketOpen("UST", 150), self.Rebalance ) def OnData(self, data): pass def Rebalance(self): for stock in self.tkr: if stock =='TVIX': weight = 0.05 else: weight = 0.315 self.SetHoldings(stock, weight)