Overall Statistics |
Total Trades 98 Average Win 0.17% Average Loss -0.23% Compounding Annual Return -10.318% Drawdown 3.700% Expectancy -0.240 Net Profit -2.678% Sharpe Ratio -1.484 Loss Rate 56% Win Rate 44% Profit-Loss Ratio 0.74 Alpha -0.134 Beta 0.37 Annual Standard Deviation 0.058 Annual Variance 0.003 Information Ratio -3.325 Tracking Error 0.065 Treynor Ratio -0.232 Total Fees $98.00 |
from System import * from System.Collections.Generic import List from QuantConnect import * from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Data.UniverseSelection import * class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2017,07,01) #Set Start Date #self.SetEndDate(2015,01,01) #Set End Date self.SetCash(10000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> # - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.__numberOfSymbols = 5 self.__numberOfSymbolsFine = 2 self._changes = SecurityChanges.None ################### UNIVERSE ##################### # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True) # take the top entries from our sorted collection return [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] def OnData(self, data): # if we have no changes, do nothing if self._changes == SecurityChanges.None: return # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) self.Log('Exit: '.format(security)) # we want 20% allocation in each security in our universe for security in self._changes.AddedSecurities: self.SetHoldings(security.Symbol, 0.2) self.Log('Long: '.format(security)) self._changes = SecurityChanges.None # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes