Overall Statistics
Total Trades
0
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Net Profit
0%
Sharpe Ratio
0
Probabilistic Sharpe Ratio
0%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
1.436
Tracking Error
0.14
Treynor Ratio
0
Total Fees
$0.00
Estimated Strategy Capacity
$0
Lowest Capacity Asset
from AlgorithmImports import *
from EnumFunc import *

class NasdaqAlpha(AlphaModel):
    
    def __init__(self, lumberDataClass):
        self.insights = []
        self.securities = []
        self.lumberDataClass = lumberDataClass # Passed the Lumber Data Class 
        

    # Handles security changes in from your universe model.
    def OnSecuritiesChanged(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None:
        
        # This code runs everytime there is a contract rollover but does it know which symbol has switched
        for changed_event in algorithm.CurrentSlice.SymbolChangedEvents.Values:
            # algorithm.Debug(f"Contract rollover from (AM- OnSecuritiesChanged) {changed_event.OldSymbol} to {changed_event.NewSymbol}, Time:{algorithm.Time}")
            pass
        
        # Everytime Contract rollsOver (any Lumber or Nasdaq), the following line runs, but ...
        # algorithm.Debug(f"Count AM: {changes.Count}, changes:{changes}")
        
        # .. this code only runs Once at the very start not when future contracts roll!
        for security in changes.AddedSecurities:
            # algorithm.Debug(f"In OnSecuritiesChanged(AM) @ DateTime:{algorithm.Time}, Mapped/ID: {security.Mapped}, Canonical: {security.Mapped.Canonical} \
            #  Symbol: {security.Symbol}, Value: {security.Mapped.Value}, SecurityType: {getSecurityType(security.Mapped.SecurityType)}")                          
            pass

        for security in changes.RemovedSecurities:
            pass


    def Update(self, algorithm, data):
        
        # https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/quantconnect/us-futures-security-master#05-Data-Point-Attributes

        # This Code runs everytime there is a futures rollover
        # BEAWARE SymbolChangedEvents may also be linked to other events?
        # algorithm.Debug(f"data.SymbolChangedEvents.Keys:{data.SymbolChangedEvents.Keys}")

        if data.Keys[0] == self.lumberDataClass.Symbol:
            for changed_event in data.SymbolChangedEvents.Values:
                algorithm.Debug(f"Contract rollover (AM- Update Method) from {changed_event.OldSymbol} to {changed_event.NewSymbol}")
                security  = data.Keys[0]                           
                self.securities.append(security.Value)
                algorithm.Debug(f"In Update (AM) @ DateTime:{algorithm.Time}, security:{security}, ID:{security.ID},Canonical:{security.Canonical} \
                    + Value:{security.Value},Underlying:{security.Underlying}. SecurityType:{getSecurityType(security.SecurityType)}")


        insight = None
        return self.insights

from AlgorithmImports import *
import math
from collections import deque
from EnumFunc import *
from functools import wraps


# A skeleton class for storing Futures Data - Shared by all Models

class DataClass:

    def __init__(self, Algorithm, continuous_contract):
        
        self.algo = Algorithm # This is Our Instance of QCAlgorithm
        # self.algo.UniverseSettings.ExtendedMarketHours = True

        # https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/requesting-data#09-Properties
        self.continuous_contract = continuous_contract

        # Symbols for securities:
        self.Symbol = self.continuous_contract.Symbol 
        self.tickSize = self.continuous_contract.SymbolProperties.MinimumPriceVariation
        
        # Index, askclose, askhigh, asklow, askopen, asksize, bidclose, bidhigh, bidlow, bidopen, bidsize, close, high, low, open, volume)
        # Index, Value:(Timestamp('2022-11-15 00:00:00'), 'LBS Y3IN813DW4QP', Timestamp('2022-10-26 19:00:00'))
        self.yesterday = dotdict(dict.fromkeys(['open', 'high', 'low', 'close', 'volume']))
        
        # Make sure to use self.Mapped and not self.Symbol since using BackwardPanama
        self.lastBid = dotdict(dict.fromkeys(['time', 'price', 'size']))
        self.lastAsk = dotdict(dict.fromkeys(['time','price', 'size']))
        
        self._bestBid = dotdict(dict.fromkeys(['time', 'price', 'size']))
        self._bestAsk = dotdict(dict.fromkeys(['time','price', 'size']))
        self._trade = dotdict(dict.fromkeys(['time','price', 'size']))

        # self.trade = dotdict(dict.fromkeys(['time','price', 'size']))

        self._WAP = None
                

        # https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/supported-indicators/average-true-range
        # This should be yesterday's
        # self.atr = self.algo.ATR(self.Symbol, Resolution.Daily)    
        
        # quoteEvent is triggered everytime a new Quote is placed not only when the best quote is changed/placed- I think?
        # self.quoteEvent = TickQuoteBarConsolidator(1)
        # self.quoteEvent.DataConsolidated += self.quoteEventHandler
        # self.algo.SubscriptionManager.AddConsolidator(self.Symbol, self.quoteEvent)

        # tradeEvent is triggered everytime a Trade is placed?
        # self.tradeEvent = TickConsolidator(1)
        # self.tradeEvent.DataConsolidated += self.tradeEventHandler
        # self.algo.SubscriptionManager.AddConsolidator(self.Symbol, self.tradeEvent)

        # To Update Yesterday: At Midnight the contract Rolls and pulls the correct data for Lumber - The issue is other futures may have different Open Close timings
        # self.algo.Schedule.On(self.algo.DateRules.EveryDay(), self.algo.TimeRules.Midnight, self.updateYesterday)

        # Update at a specific Time - Symbol agnostic - This is 10 minutes before Lumber Open - Change when daylight savings
        # self.algo.Schedule.On(self.algo.DateRules.EveryDay(), self.algo.TimeRules.At(8,59), self.updateYesterday)        

        # Get Yesterday's Settlement - Make it a Property
        # self.Securities[self.lumber.Mapped].Expiry # Get contract's expiry?

        # Update Yesterday Price 10 minutes before Market Opens - Can even use 'LBS' in TimeRules.AfterMarketOpen
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.AfterMarketOpen(self.Symbol, -10), self.updateYesterday)

        # Reset BBO dicts 10 minutes after market close - Not sure if it impacts extendedMarketHours
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.BeforeMarketClose(self.Symbol, -10), self.resetTickDict)

        # Nasdaq - closes at 4 pm & opens at 8:30 Chicago, Also trades at 11 pm till not sure when?
        # OnSecuritiesChanged: Date:2022-12-19 23:00:00, security:MNQ Y6URRFPZ86BL


    def quoteEventHandler(self, sender: object, Qbar: QuoteBar) -> None:

        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Quote':
                                        
                    if int(getattr(self.algo.Securities[self.Mapped], 'AskSize')) != 0: 
                        for key,prop in zip(list(self._bestAsk.keys()),['LocalTime','AskPrice', 'AskSize']):
                            setattr(self._bestAsk,str(key),getattr(self.algo.Securities[self.Mapped], prop))

                    if int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0: 
                        for key,prop in zip(list(self._bestBid.keys()),['LocalTime','BidPrice', 'BidSize']):
                            setattr(self._bestBid,str(key),getattr(self.algo.Securities[self.Mapped], prop))

                    # Code to store Last Bid & Ask - switching it off for the time being
                    # if int(getattr(tick, 'AskPrice')) != 0: 
                    #     # In DateTime - microseconds missing leading zeros in our dict versus reported
                    #     for key,prop in zip(list(self.lastAsk.keys()),['EndTime','AskPrice', 'AskSize']):
                    #         setattr(self.lastAsk,str(key),getattr(tick, prop))
                        
                    # if int(getattr(tick, 'BidPrice')) != 0: 
                    #     for key,prop in zip(list(self.lastBid.keys()),['EndTime','BidPrice', 'BidSize']):
                    #         setattr(self.lastBid,str(key),getattr(tick, prop))



    def tradeEventHandler(self, sender: object, Tbar: TradeBar) -> None:
        
        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Trade':
                    self.algo.tradeCount += 1
                    if int(getattr(tick, 'Quantity')) != 0:
                        for key,prop in zip(list(self.trade.keys()),['EndTime','Price','Quantity']):
                            setattr(self.trade,str(key),getattr(tick, prop))                            


    # Resetting Best Bid/Ask at MarketClose
    def resetTickDict(self):

        # Resetting After Market Close
        # self.lastAsk = self.lastAsk.fromkeys(self.lastAsk, None)
        # self.lastBid = self.lastBid.fromkeys(self.lastBid, None)

        self._bestAsk = self._bestAsk.fromkeys(self._bestAsk, None)
        self._bestBid = self._bestBid.fromkeys(self._bestBid, None)
        self._trade = self._trade.fromkeys(self._trade, None)
        self._WAP = None

        # self.algo.Debug(f"Ask Reset:{self.Symbol} :{self.algo.Time}:{self._bestAsk}")
        # self.algo.Debug(f"Bid Reset :{self.Symbol} :{self.algo.Time}:{self._bestBid}")
        # self.algo.Debug(f"Trade Reset :{self.Symbol} :{self.algo.Time}:{self._trade}")


    def updateYesterday(self):

        # self.algo.Debug(f"Updated Yesterday price for:{self.Symbol} @ {self.algo.Time}")
        
        # Stores Contracts Yesterday's OHCLV
        # Note that Volume doesn't match with reported in our Database (atleast for Lumber)
        
        if self.Mapped is not None:
            # self.algo.Debug(f"ctrctHistory Symbol:{self.Mapped},{self.continuous_contract}")

            ctrctHistory = self.algo.History(self.Mapped, 1, Resolution.Daily )   
            for bar in ctrctHistory.itertuples():
                for property in ['open', 'high', 'low', 'close', 'volume']:
                    if not math.isnan(float(getattr(bar, property))): # Required since updateYesterday is called even on Non trading days
                        self.yesterday[str(property)] = getattr(bar, property)

                # for prop in dir(bar):
                #     value = getattr(bar, prop)
                #     self.algo.Debug(f"prop:{prop}, value:{value}")
                        # Checking if we get same data
                        # if self.algo.CurrentSlice[self.Mapped].High is not None:
                        #     self.algo.Debug(f"{self.algo.CurrentSlice[self.Mapped].High}")


    # RealOnly RealTime 
    @property
    def Mapped(self):
        return getattr(self.continuous_contract, 'Mapped')


    @property
    def Canonical(self):
        return getattr(self.Symbol, 'Canonical')

    # @property
    def Underlying(self):
        return getattr(self, 'Underlying')


    @property
    def bestBid(self):

        # Not using this since somehow when we club 2 futures, this wasn't updating correctly or giving None
        # Also using getattr(self.algo.Securities[self.Mapped], prop)) instead of 
        # if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
        #     ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
        #     for tick in ticks:
        #         tick_type = getTickType(tick.TickType)
        #         if tick_type == 'Quote' and int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0: 
        #             for key,prop in zip(list(self._bestBid.keys()),['LocalTime','BidPrice', 'BidSize']):
        #                 setattr(self._bestBid,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        # Only updating if Bid price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0 and not self.alreadyUpdated('BidPrice', 'BidSize', self._bestBid):
            for key,prop in zip(list(self._bestBid.keys()),['LocalTime','BidPrice', 'BidSize']):
                setattr(self._bestBid,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        return self._bestBid



    @property
    def bestAsk(self):
        
        # Only updating if Ask price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'AskSize')) != 0 and not self.alreadyUpdated('AskPrice', 'AskSize', self._bestAsk):
            for key,prop in zip(list(self._bestBid.keys()),['LocalTime','AskPrice', 'AskSize']):
                setattr(self._bestAsk,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        return self._bestAsk


    # This is not entirely correct as someone may have canceled and others may have added a bid with net being affect 0 
    def alreadyUpdated(self, price, size, dictionary):
        return getattr(self.algo.Securities[self.Mapped], price) == dictionary.price and getattr(self.algo.Securities[self.Mapped], size) == dictionary.size
        
    
    @property
    def trade(self):
        
        # TO DO: Need to make it work like Quotes - Ask/Bid - getattr(self.algo.Securities[self.Mapped], prop))

        # Ideally this should use self.Mapped but it doesn't take that. 

        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]

            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0:
                    for key,prop in zip(list(self._trade.keys()),['Time','Price','Quantity']):
                        setattr(self._trade,str(key),getattr(tick, prop))
                        # setattr(self._trade,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

        # end_time = self.algo.Time
        # start_time = end_time  - timedelta(seconds=1)
        
        
        # ticks = self.algo.History[Tick](self.Mapped, start_time, end_time, Resolution.Tick)
        # count = 0
        # # self.algo.Debug(f"type of ticks:{type(Ticks)}")
        # for tick in ticks:
        #     if getTickType(tick.TickType) == 'Trade':
        #         self.algo.Debug(f"tick{count}:{tick}")
        #         count +=1
            
                # if getTickType(tick.TickType) == 'Trade':
                #     for prop in dir(tick):
                #         try:
                #                 value = getattr(tick, prop)
                #                 self.algo.Debug(f"Tprop:{prop}, Tvalue:{value}")
                #         except:
                #             pass

                #         tick.set_Symbol(self.Mapped)

            # tick_type = getTickType(tick.TickType)
            #  and int(getattr(tick, 'Quantity')) != 0
            # if tick_type == 'Trade':
            #     count +=1
            #     dic = {k:getattr(tick, k) for k in ['EndTime','Price','Quantity'] if getattr(tick, k) is not None}
            #     # self.algo.Debug(f"Tickcount:{count}, time:{self.algo.Time} {dic}")

            #     for key,prop in zip(list(self._trade.keys()),['EndTime','Price','Quantity']):                       
            #         setattr(self._trade,str(key),getattr(tick, prop))
        
        return self._trade


    @property
    def WAP(self):

        if None not in (self.bestAsk.size,self.bestBid.size):
            self._WAP = round(((self.bestBid.price * self.bestAsk.size) + (self.bestAsk.price * self.bestBid.size))/(self.bestBid.size + self.bestAsk.size),1)
            
        return self._WAP
        
        
    # @property
    # def Bid(self):
    #     return self._Bid
        
    # @Bid.setter
    # def Bid(self, bid):
    #     # if bid == 0 or bid is None:
    #         # self._Bid = 0  # Pull this from other rolling?
    #         # pass
    #     # self._Bid = bid

    #     # self.WAP = None # Invalidate previously Calculated WAP
    #     # return self._Bid
    #     pass





# Links to documentation pertaining 

# Time Modeling
# https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/time-modeling/timeslices#03-Properties

# Futures - Handling Data
# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/handling-data


# To get the current Slice object, define an OnData method or use the CurrentSlice property of your algorithm (outside of the OnData method).
# If the data object doesn't contain any market data but it contains auxiliary data, the slice.ContainsKey(symbol) method can return true while slice[symbol] returns None.


class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

# region imports
from AlgorithmImports import *
from AlphaModel import *
from DataClass import *
import math 

class NasdaqStrategy(QCAlgorithm):

    def Initialize(self):

        self.SetStartDate(2022,12,19)
        self.SetEndDate(2023,1,5)
        self.SetCash(100000)
        self.SetTimeZone(TimeZones.Chicago)  # If TimeZone is Chicago - Algo Time and Data End Time are same at 1800 hours
        self.SetWarmUp(timedelta(days=1))

        self.Data = {}
        # FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber,'Nasdaq':Futures.Indices.NASDAQ100EMini}
        FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber}

        # For Nasdaq we need DataMappingMode.OpenInterest or LastTradingDay - How to change?
        
        for key, value in FutureSymbols.items():
            
            dataMappingMode_ = DataMappingMode.FirstDayMonth if key == 'Lumber' \
            else DataMappingMode.OpenInterest if key == 'Nasdaq' else DataMappingMode.LastTradingDay

            # dataMappingMode_ = DataMappingMode.FirstDayMonth if key == 'Lumber' \
            # else DataMappingMode.LastTradingDay
            
            # BackwardsPanamaCanal

            future = self.AddFuture(value, Resolution.Tick,dataMappingMode = dataMappingMode_, contractDepthOffset=0, 
            dataNormalizationMode = DataNormalizationMode.Raw, extendedMarketHours=True, fillDataForward = True)
            self.Data[key] = DataClass(self, future) # Initiating DataClass for each Future & Passing our instance of QCAlgorithm Class
        
        
        # NOT SURE IF WORKING CORRECTLY
        # To trade the contract in the same time step you subscribe to the contract - Since GetLastKnowPrice makes a history request, it may slow the algorithm down.
        # self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x)))
        
        # Set alpha model - This also gives you access to the AlphaModel Instance
        # self.alpha = NasdaqAlpha(self.Data['Lumber'])  
        # self.SetAlpha(self.alpha)

        # Printing Yesterday data 
        # self.Schedule.On(self.DateRules.EveryDay(self.Data['Lumber'].Symbol), self.TimeRules.AfterMarketOpen(self.Data['Lumber'].Symbol, -1), self.beforeLumberOpen)
        self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(8,55), self.beforeLumberOpen)
        # self.TimeRules.BeforeMarketClose(symbol: Symbol, minutesBeforeClose: float = 0, extendedMarketOpen: bool = False)
        self.tradeCount = 0

        # Check Entry Condition only 30 seconds prior to Market Open
        self.entryTimeStart = self.Time.replace(hour=9, minute=0, second=0, microsecond=55000)
        self.entryTimeEnd   = self.Time.replace(hour=9, minute=1, second=0, microsecond=0)

       
    def beforeLumberOpen(self):

        if self.IsWarmingUp: return
        
        # Works - Get Yesterdays' data keeping in mind Rolled Over Contracts
        for symbol in self.Data.keys():
            # self.Debug(f"Yester Time:{self.Time}, {self.Data[symbol].Mapped}.yesterday:{self.Data[symbol].yesterday}")
            pass
        
        # Works
        # for security in self.ActiveSecurities.Values:
        #     self.Debug(f"self.Time:{self.Time} ActiveSecurity:{security}")


    def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
        
        # Only runs at the start of program not when Contract rolls 
        for security in changes.AddedSecurities:
            if len(changes.AddedSecurities) == 0: return
            self.Debug(f"In Main: OnSecuritiesChanged: Date:{self.Time}, security:{changes.AddedSecurities[0].Mapped}")

    def OnEndOfDay(self, symbol):
        # self.Debug(f"OnEndOfDay self.Time:{self.Time}, Symbol:{self.Data['Lumber'].Mapped.Value}")
        pass
                        
    def OnData(self, data):    

        # Useless
        # self.Debug("Hello")
        # for chain in data.FutureChains:
        #     contracts = list(chain.Value)
        #     self.Debug(f"Last contracts: {contracts}")
        #     for contract in contracts:
        #         self.Debug(f"contract:{contract}, Last Price: {contract.LastPrice}")
        
        # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/warm-up-periods#03-Warm-Up-Vs-Reality
        #  In OnData: Don't run if the indicators aren't ready
        if self.IsWarmingUp: return
        
        # Below code important to compare Ticks with whats reported from DataClass
        tickTradeProps = ['LastPrice','Quantity']
        tickQuoteProps = ['BidPrice','BidSize','AskPrice','AskSize']
        # tickOIProps = ['Value']  # Not Getting Data for OpenInterest
        
        # for k in data.Ticks.Keys:
        #     self.Debug(f"keys:{k}")
        #     self.Debug(f"Underlying:{k.Underlying}")
        #     if data.Ticks.ContainsKey(k) and data.Ticks[k] is not None:
        #         self.Debug("yes")



        for security in data.Keys:

            # if self.Time < self.entryTimeStart or self.Time > self.entryTimeEnd: return
            # pass
            # self.Debug(f"security:{security}")
            # for prop in dir(security):
            #     value = getattr(security, prop)
            #     self.Debug(f"prop:{prop}, value:{value}")

            if security == self.Data['Lumber'].Mapped:
                self.Debug(f"security Matched:{security}")
                
            if data.Ticks.ContainsKey(security) and data.Ticks[security] is not None:
                ticks = data.Ticks[security]
                for tick in ticks:
                    previous_time = self.Time
                    tick_type = getTickType(tick.TickType)
                    if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0:

                        # This is for Trade Data
                        dic = {k:getattr(tick, k) for k in tickTradeProps if getattr(tick, k) is not None}
                        self.Debug(f"TradeTick:{self.Time} {dic}")
                        # self.Debug(f"self.Data['Lumber'].Underlying:{self.Data['Lumber'].Underlying} ")
                                             
                    # elif tick_type == 'Quote':
                        # This if for Last Bid & Ask
                        # dic = {k:getattr(tick, k) for k in tickQuoteProps if getattr(tick, k) is not None}
                        # self.Debug(f"*QuoteTick*: {self.Time}, security:{security},  {dic}")

                        # This if for Best Bid & Ask
                        # dic2 = {k:getattr(self.Securities[security], k) for k in tickQuoteProps} 
                        # self.Debug(f"+QuoteTick2+:{self.Time}, security:{security},  {dic2}")
                        
            
        for symbol in self.Data.keys():
            
            if self.Time < self.entryTimeStart or self.Time > self.entryTimeEnd: return

            # self.Debug(f"SYMBOL:{symbol}")            
            # self.Debug(f"++BestBid:{symbol}:{self.Time}:{self.Data[symbol].bestBid}")
            # self.Debug(f"^^BestAsk:{symbol}:{self.Time}:{self.Data[symbol].bestAsk}")
            
            self.Debug(f"**trade:{symbol}:{self.Time}:{self.Data[symbol].trade}")
            # self.Debug(f"**WAP:{symbol}:{self.Time}:{self.Data[symbol].WAP}")            
            # self.Debug(f"**ATR:{symbol}:{self.Time}:{self.Data[symbol].atr.Current.Value}")

            # self.Debug(f"**LastAsk:{self.Data[symbol].lastAsk}")            
            # self.Debug(f"**LastBid:{self.Data[symbol].lastBid}")

            # self.Debug(f" BestBid == LastBid:{self.Data[symbol].bestBid.price == self.Data[symbol].lastBid.price}")
            # self.Debug(f" BestAsk == LastAsk:{self.Data[symbol].bestAsk.price == self.Data[symbol].lastAsk.price}")
                    

        # Just to check if FuncSecuritySeeder gets us GetLastKnownPrices
        # for security in self.ActiveSecurities.Values:
            # self.Debug(f"Todays Close:{self.Securities[security.Symbol].Close}, Date:{self.Time}, security:{security}")
            # if security == 'LBS Y54QLJOCEN7L':
            
            # self.Debug(f"Mapped:{self.Data['Lumber'].Mapped}")
            # self.Debug(f"security == self.Data['Lumber'].Mapped:{security.Symbol == self.Data['Lumber'].Mapped}")
            # if security.Symbol == self.Data['Lumber'].Mapped:
            #     self.Debug(f"Todays Close:{self.Securities[security.Symbol].Close}, Date:{self.Time}, security:{security}")
            #     self.Debug("Yes")
            #     b = self.Securities[self.Data['Lumber'].Mapped]
            #     for prop in dir(b):
            #         value = getattr(b, prop)
            #         self.Debug(f"prop11:{prop}, value:{value}")  


        # WORKS - Remove from here since updated several times in a day
        # self.Debug(f"Todays ____Close:{self.Securities[self.Data['Lumber'].Mapped].Price}, Date:{self.Time}")
       
 
        
        if data.Ticks.ContainsKey(self.Data['Lumber'].Mapped):
            if data.Ticks[self.Data['Lumber'].Symbol] is not None:                
                self.Debug(f"**MAIN** Date:{self.Time}, MappedValue:{self.Data['Lumber'].Mapped.Value}, MappedID:{self.Data['Lumber'].Mapped.ID}, ") 


        #         b = data.Bars[self.Data['Lumber'].Mapped] 
        #         for prop in dir(b):
        #             value = getattr(b, prop)
        #             self.algo.Debug(f"prop:{prop}, value:{value}")         


        # Works
        # if data.Ticks.ContainsKey(self.Data['Lumber'].Symbol):
        #     if data.Ticks[self.Data['Lumber'].Symbol] is not None:                
                # self.Debug(f"**MAIN** Date:{self.Time}, MappedValue:{self.Data['Lumber'].Mapped.Value}, MappedID:{self.Data['Lumber'].Mapped.ID}, ")             

        # https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/quantconnect/us-futures-security-master#05-Data-Point-Attributes        
        for symbol in self.Data.keys():
            if data.SymbolChangedEvents.ContainsKey(self.Data[symbol].Symbol):
                symbolChangedEvent = data.SymbolChangedEvents[self.Data[symbol].Symbol]
                self.Debug(f"In MAIN Symbol changed: {symbolChangedEvent.OldSymbol} -> {symbolChangedEvent.NewSymbol} \
                EndTime:{symbolChangedEvent.EndTime} DataType:{getDataType(symbolChangedEvent.DataType)}, Expiry: {self.Securities[self.Data[symbol].Mapped].Expiry}")

        

        # if data[self.Data['Lumber'].Mapped] is not None:
        #     self.Debug(f"data123Map: {data[self.Data['Lumber'].Mapped]}")


             
    # When your algorithm stops executing, LEAN calls the OnEndOfAlgorithm method.
    def OnEndOfAlgorithm(self) -> None:
        # self.Debug(f"self.Alpha.securities:{self.alpha.securities}")
        # self.Debug(f"self.count:{self.count}")
        self.Debug(f"self.TradeCount:{self.tradeCount}")
        


    def OnWarmUpFinished(self) -> None:
        self.Debug(f"Algorithm Ready@{self.Time}")
        pass


        
from AlgorithmImports import *
import math
from collections import deque
from EnumFunc import *
from functools import wraps


# A skeleton class for storing Futures Data - Shared by all Models

class DataClass():

    def __init__(self, Algorithm, continuous_contract):
        
        self.algo = Algorithm # This is Our Instance of QCAlgorithm
        self.continuous_contract = continuous_contract
        self.Symbol = self.continuous_contract.Symbol 
        self.tickSize = self.continuous_contract.SymbolProperties.MinimumPriceVariation
        
        self.yesterday = dotdict(dict.fromkeys(['open', 'high', 'low', 'close', 'volume']))        
        self._bestBid = dotdict(dict.fromkeys(['time', 'price', 'size']))
        self._bestAsk = dotdict(dict.fromkeys(['time','price', 'size']))
        self._trade = dotdict(dict.fromkeys(['time','price', 'size']))
        self._WAP = None                

        self.atrPeriod = 2
        self._atr = self.algo.ATR(self.Symbol, self.atrPeriod, MovingAverageType.Simple, Resolution.Daily)
        self._atr.Updated += self.update_event_handler

        # self._switched = True # So all related indicators will be updated at the start of the Algorithm

        # Update Yesterday Price 10 minutes before Market Opens - Can even use 'LBS' in TimeRules.AfterMarketOpen
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.AfterMarketOpen(self.Symbol, -10), self.updateYesterday)

        # Reset BBO dicts 10 minutes after market close - Not sure if it impacts extendedMarketHours
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.BeforeMarketClose(self.Symbol, -10), self.resetTickDict)

    def update_event_handler(self, indicator: object, indicator_data_point: IndicatorDataPoint) -> None:
        if indicator.IsReady:
            self.algo.Debug(f"Indicator Value: {indicator_data_point.Value}")


    # Resetting Best Bid/Ask at MarketClose
    def resetTickDict(self):

        self._bestAsk = self._bestAsk.fromkeys(self._bestAsk, None)
        self._bestBid = self._bestBid.fromkeys(self._bestBid, None)
        self._trade = self._trade.fromkeys(self._trade, None)
        self._WAP = None

    # Can even combine with ATR since both use history
    def updateYesterday(self):
    
        # Note that Volume doesn't match with reported in our Database (atleast for Lumber)       
        if self.Mapped is not None:
            ctrctHistory = self.algo.History(self.Mapped, 1, Resolution.Daily )   
            for bar in ctrctHistory.itertuples():
                for property in ['open', 'high', 'low', 'close', 'volume']:
                    if not math.isnan(float(getattr(bar, property))): # Required since updateYesterday is called even on Non trading days
                        self.yesterday[str(property)] = getattr(bar, property)

    # method 
    
    def customOnData(self,data):

        for security in data.Keys:

           
            mappedContract=self.algo.Securities[self.Mapped]
            self.algo.Debug(f"contractSymbol:{mappedContract.Symbol},Trade:{mappedContract.Price}")
            

        

            





    # RealOnly RealTime 
    @property
    def Mapped(self):
        return getattr(self.continuous_contract, 'Mapped')

    @property
    def Canonical(self):
        return getattr(self.Symbol, 'Canonical')


    # ToDo: Issues - Make it work for self.Symbol - for now it only works for self.Mapped
    # @property
    # def atr(self):

    #     # Load History if either the contract switched or Indicator not ready yet
    #     if not self._atr.IsReady:
            
    #         historyATR = self.algo.History[TradeBar](self.Mapped, self.atrPeriod, Resolution.Daily)

    #         # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/rolling-window#09-Cast-to-Other-Types
    #         historyATR = self.algo.PandasConverter.GetDataFrame[TradeBar](list(historyATR)[::-1])           

    #         for bar in historyATR.itertuples():
    #             tradebar = TradeBar(bar.Index[1], self.Mapped, float(bar.open), float(bar.high), float(bar.low), float(bar.close), float(bar.volume))
    #             self._atr.Update(tradebar)
            
    #         # self._switched = False # Turn it off so unless its not set to true in Main it remains off

    #     return self._atr
        

    @property
    def bestBid(self):

        # Only updating if Bid price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0 and not self.alreadyUpdated('BidPrice', 'BidSize', self._bestBid):
            for key,prop in zip(list(self._bestBid.keys()),['LocalTime','BidPrice', 'BidSize']):
                setattr(self._bestBid,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        return self._bestBid

    @property
    def bestAsk(self):
        
        # Only updating if Ask price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'AskSize')) != 0 and not self.alreadyUpdated('AskPrice', 'AskSize', self._bestAsk):
            for key,prop in zip(list(self._bestBid.keys()),['LocalTime','AskPrice', 'AskSize']):
                setattr(self._bestAsk,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        return self._bestAsk


    # This is not entirely correct as someone may have canceled and others may have added a bid with net being affect 0 
    def alreadyUpdated(self, price, size, dictionary):
        return getattr(self.algo.Securities[self.Mapped], price) == dictionary.price and getattr(self.algo.Securities[self.Mapped], size) == dictionary.size
        
    
    # TO DO: Incorrect since when we BackwardsPanamaCanal for DataNormalizationMode, trade prices for older contracts wille be adjusted unless we use self.Mapped just like Quotes - Ask/Bid - getattr(self.algo.Securities[self.Mapped], prop))
    # However, self.Securities option doesn't take self.Mapped while ticks don't seem to have a property that matches last traded price. LastPrice gives BestBid/Ask
    @property
    def trade(self):
        
        
        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0:
                    for key,prop in zip(list(self._trade.keys()),['Time','Price','Quantity']):
                        setattr(self._trade,str(key),getattr(tick, prop))
                        # setattr(self._trade,str(key),getattr(self.algo.Securities[self.Mapped], prop))
        
        
        # end_time = self.algo.Time
        # start_time = end_time - timedelta(seconds=1)
        # self.History[Tick](self.Mapped,  start_time,end_time, Resolution.Tick)

        return self._trade


    @property
    def WAP(self):

        if None not in (self.bestAsk.size,self.bestBid.size):
            self._WAP = round(((self.bestBid.price * self.bestAsk.size) + (self.bestAsk.price * self.bestBid.size))/(self.bestBid.size + self.bestAsk.size),1)
            
        return self._WAP


class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

from AlgorithmImports import *
# https://github.com/QuantConnect/Lean/blob/master/Common/Orders/OrderTypes.cs#L87

def get_order_status_name(index):
   return { 
       0: 'New',
       1: 'Submitted',
       2: 'PartiallyFilled',
       3: 'Filled',
       4: 'None',
       5: 'Canceled',
       6: 'None',
       7: 'Invalid',
       8: 'CancelPending',
       9: 'UpdateSubmitted '
    }[index]


def get_order_direction_name(index):
    return {
        0: 'Buy',
        1: 'Sell',
        2: 'Hold',
    }[index]


def get_order_type_name(index):
    return {
        0: 'Market',
        1: 'Limit',
        2: 'StopMarket',
        3: 'StopLimit',
        4: 'MarketOnOpen',
        5: 'MarketOnClose',
        6: 'OptionExercise',
        7: 'LimitIfTouched'
    }[index]

# This dictionary is Used to detrmine the Upside of Lumber Prices versus Yesterday's Settle:
# From there we assume, TP, 
def get_upside(index):
    return {
        '1.5%':10,
        '2%':12,
        '3%':15
    }[index]


# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/key-concepts
def getSecurityType(index):
       return {
        0: 'Base',
        1: 'Equity',
        2: 'Option',
        3: 'Commodity',
        4: 'Forex',
        5: 'Future',
        6: 'Cfd',
        7: 'Crypto',
        8: 'FutureOption',
        9: 'Index',
        10: 'IndexOption',
        'CryptoFuture': 'CryptoFuture'
        
    }[index]

def getDataType(index):
       return {
        0: 'Base',
        1: 'TradeBar',
        2: 'Tick',
        3: 'Auxiliary', # Data associated with an instrument
        4: 'QuoteBar',
        5: 'OptionChain',
        6: 'FuturesChain'
    }[index]

def getTickType(index):
       return {
        0: 'Trade',
        1: 'Quote',
        2: 'OpenInterest' # Open Interest type tick object (for options, futures)
    }[index]

#region imports
from AlgorithmImports import *
#endregion

# NEED HELP
# 1. Done: Get Yesterday's Close Price for Lumber Contracts - 2 ways to acheive. 
        # 1a. Use history fuction everyday - Works Fine
        # 2a. Use Identity Indicator - Its partially correct when using Resolution.Daily but incorrect On days when the contract rolls.
        # i.e. it still shows yesterday's close for previous contract on RollOverDays. Also would require a day or 2 of warmuP
        #   Secondly, if I use Resolution.Tick in Lumber Contract definition, it shows 2 days ago prices when called before market Open


# 3. Find trading days when both Nasdaq and Lumber were open (keeping in mind yesterday's data) and only trade when both are available atleast for backtesting
# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/market-hours/cme/mnq
# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/market-hours/cme/lbs

# 4. Nasdaq data not available on first day since it gets added at 2300 hours while Lumber gets added at 00 hours.

# 5. Didn't check if Nasdaq prices are fine or if Nasdaq yesterday contract prices match the rolled over contract

# 6. Whats the difference between getting Bids & Asks from ticks like below - Is the first one Time&Sales (for quotes) while second one gives Best Bids/Asks?
                # ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
                # for tick in ticks:
                #         tick.AskPrice 

        # versus getting bids/asks from self.Securities[security].AskPrice

# 7.         # Questions on quoteEvent (TickQuoteBarConsolidator): 
        # 1. Does this tell you total number of best bids/asks at any moment in time or are these just seperate orders and their corresponding sizes? 
        # 2. Quotes are for mapped rolled contracts?
        # 3. Also these are not all quotes as placed but only Top Bids/Asks. So for example, they are only generated if someone has topped a previous bid/offer?






# Some other references:

# 1. Tick Data related
        # https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/handling-data#07-Ticks
        # LastPrice - Alias for "Value" - the last sale for this asset. Same as Price 
        # IsFillForward - True if this is a fill forward piece of data 
        # 'Time','EndTime' - for Trade Tick is same as self.Time but for time use this property only
        # 'Symbol' - Not available but has other sub properties 
        # ,'SaleCondition','Suspicious' - Not relevant
        
        # tickTradeProps = ['Price','Quantity']
        # tickQuoteProps = ['BidPrice','BidSize','AskPrice','AskSize']
        # tickOIProps = ['Value']  # Not Getting Data for OpenInterest

# Other Notes to self:
        # 1. Since Resolution is for Ticks, we won't be getting Trade & Quote Bars
        # 2. 'LocalTime': Local time for this market
        # 3. Properties of self.Securities - https://www.quantconnect.com/docs/v2/writing-algorithms/securities/properties#02-Security-Properties
        
        # 4. Nasdaq - closes at 4 pm & opens at 8:30 Chicago, Also trades at 11 pm till not sure when?
                # OnSecuritiesChanged: Date:2022-12-19 23:00:00, security:MNQ Y6URRFPZ86BL

        # 5. # Links to documentation pertaining 

                # Time Modeling
                # https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/time-modeling/timeslices#03-Properties

                # Futures - Handling Data
                # https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/handling-data


                # To get the current Slice object, define an OnData method or use the CurrentSlice property of your algorithm (outside of the OnData method).
                # If the data object doesn't contain any market data but it contains auxiliary data, the slice.ContainsKey(symbol) method can return true while slice[symbol] returns None.


# Indicator Help

# In QuantConnect/Lean, we have shortcut methods for indicators, they belong to the QCAlgorithm class (use self) and name are upper-cased. These helper methods create a new instance of a indicator object and hook it up to a data consolidator so that the indicator is automatically updated by the engine.
# Since these methods create a new instance, we just should only to call it once (normally in Initialize) and assign it to a class variable to be accessed throughout the algorithm.

# 1. AverageTrueRange:
# https://www.quantconnect.com/forum/discussion/7972/using-atr-and-other-039-complex-039-indicators-with-history/p1
# https://www.quantconnect.com/forum/discussion/11457/warmup-atr-with-history
# https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/supported-indicators/average-true-range

# region imports
from AlgorithmImports import *
from AlphaModel import *
from DataClass import *
import math 

class NasdaqStrategy(QCAlgorithm):

    def Initialize(self):

        self.SetStartDate(2022,12,26)
        self.SetEndDate(2023,1,5)
        self.SetCash(100000)
        self.SetTimeZone(TimeZones.Chicago)  # If TimeZone is Chicago - Algo Time and Data End Time are same at 1800 hours
        self.SetWarmUp(timedelta(days=1))

        self.Data = {}
        # FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber,'Nasdaq':Futures.Indices.NASDAQ100EMini}
        FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber}
        
        for key, value in FutureSymbols.items():
            
            dataMappingMode_ = DataMappingMode.FirstDayMonth if key == 'Lumber' \
            else DataMappingMode.OpenInterest if key == 'Nasdaq' else DataMappingMode.LastTradingDay

            # Use BackwardsPanamaCanal for DataNormalizationMode when "Trade" PROPERTY is able to map to Mapped contract
            future = self.AddFuture(value, Resolution.Tick,dataMappingMode = dataMappingMode_, contractDepthOffset=0, 
            dataNormalizationMode = DataNormalizationMode.Raw, extendedMarketHours=True, fillDataForward = True)
            self.Data[key] = DataClass(self, future) # Initiating DataClass for each Future & Passing our instance of QCAlgorithm Class'
            
        
        # Set alpha model - This also gives you access to the AlphaModel Instance
        self.alpha = NasdaqAlpha(self.Data['Lumber'])  
        self.SetAlpha(self.alpha)

        # Printing Yesterday data 
        self.Schedule.On(self.DateRules.EveryDay(self.Data['Lumber'].Symbol), self.TimeRules.AfterMarketOpen(self.Data['Lumber'].Symbol, -1), self.beforeLumberOpen)
        # self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(8,55), self.beforeLumberOpen)

        # Temporary
        self.entryTimeStart = self.Time.replace(hour=8, minute=59, second=0, microsecond=55000)
        self.entryTimeEnd   = self.Time.replace(hour=9, minute=3, second=0, microsecond=0)

       
    def beforeLumberOpen(self):

        # if self.IsWarmingUp: return
        
        # Works - Get Yesterdays' data keeping in mind Rolled Over Contracts
        for symbol in self.Data.keys():
            pass
            # self.Debug(f"Yester Time:{self.Time}, {self.Data[symbol].Mapped}.yesterday:{self.Data[symbol].yesterday}")
            # self.Debug(f"Calculated Yesterday's High-Low:{self.Time}, {round(float(self.Data[symbol].yesterday.high) - float(self.Data[symbol].yesterday.low),1)}")
            # self.Debug(f"ATR Yesterday:{round(self.Data[symbol]._atr.TrueRange.Current.Value,1)}, ATR {self.Data[symbol].atrPeriod} days:{round(self.Data[symbol]._atr.Current.Value,1)}")
            

        # Works
        # for security in self.ActiveSecurities.Values:
        #     self.Debug(f"self.Time:{self.Time} ActiveSecurity:{security}")

    def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
        
        # Only runs at the start of program not when Contract rolls 
        for security in changes.AddedSecurities:
            if len(changes.AddedSecurities) == 0: return
            self.Debug(f"In Main: OnSecuritiesChanged: Date:{self.Time}, security:{changes.AddedSecurities[0].Mapped}")
            

    def OnEndOfDay(self, symbol):
        # self.Debug(f"OnEndOfDay self.Time:{self.Time}, Symbol:{self.Data['Lumber'].Mapped.Value}")
        pass
                        
    def OnData(self, data):    

        # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/warm-up-periods#03-Warm-Up-Vs-Reality
        if self.IsWarmingUp: return
        
        # Below code important to compare Ticks with whats reported from DataClass
        tickTradeProps = ['LastPrice','Quantity']
        tickQuoteProps = ['BidPrice','BidSize','AskPrice','AskSize']
        # tickOIProps = ['Value']  # Not Getting Data for OpenInterest
        
        for security in data.Keys:
            # pass the data to customOndata in data class
            if security == "/LBS":
                self.Data["Lumber"].customOnData(data)

                
            
            # if self.Time < self.entryTimeStart or self.Time > self.entryTimeEnd: return # temporary
                   
            if data.Ticks.ContainsKey(security) and data.Ticks[security] is not None:
                ticks = data.Ticks[security]
                for tick in ticks:
                    tick_type = getTickType(tick.TickType)
                    if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0:
                        # For Trade Data
                        dic = {k:getattr(tick, k) for k in tickTradeProps if getattr(tick, k) is not None}
                        self.Debug(f"TradeTick:{self.Time} {dic}")          
                    elif tick_type == 'Quote':
                        # For Best Bid & Ask
                        dic2 = {k:getattr(self.Securities[security], k) for k in tickQuoteProps} 
                        self.Debug(f"QuoteTick:{self.Time}, security:{security},  {dic2}")
                        
            
        for symbol in self.Data.keys():
            
            
            # if self.Time < self.entryTimeStart or self.Time > self.entryTimeEnd: return # temporary
          
            self.Debug(f"++BestBid:{symbol}:{self.Time}:{self.Data[symbol].bestBid}")
            self.Debug(f"^^BestAsk:{symbol}:{self.Time}:{self.Data[symbol].bestAsk}")           
            self.Debug(f"**trade:{symbol}:{self.Time}:{self.Data[symbol].trade}")
            # self.Debug(f"**WAP:{symbol}:{self.Time}:{self.Data[symbol].WAP}")            
            # self.Debug(f"**ATR:{symbol}:{self.Time}:{self.Data[symbol].atr.Current.Value}")

            # WORKS - Updated several times in a day - Doesn't give last traded price - gives bid or ask
            # self.Debug(f"Todays ____Close:{self.Securities[self.Data['Lumber'].Mapped].Price}, Date:{self.Time}")
       
        # Works
        # if data.Ticks.ContainsKey(self.Data['Lumber'].Symbol):
        #     if data.Ticks[self.Data['Lumber'].Symbol] is not None:                
                # self.Debug(f"**MAIN** Date:{self.Time}, MappedValue:{self.Data['Lumber'].Mapped.Value}, MappedID:{self.Data['Lumber'].Mapped.ID}, ")             

        # https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/quantconnect/us-futures-security-master#05-Data-Point-Attributes        
        for symbol in self.Data.keys():
            if data.SymbolChangedEvents.ContainsKey(self.Data[symbol].Symbol):
                symbolChangedEvent = data.SymbolChangedEvents[self.Data[symbol].Symbol]
                self.Debug(f"In MAIN Symbol changed: {symbolChangedEvent.OldSymbol} -> {symbolChangedEvent.NewSymbol} \
                EndTime:{symbolChangedEvent.EndTime} DataType:{getDataType(symbolChangedEvent.DataType)}, Expiry: {self.Securities[self.Data[symbol].Mapped].Expiry}")


                # https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/key-concepts#09-Reset-Indicators
                self.Data[symbol]._atr.Reset() # Since after swicthing don't want the old data
                
            
    # When your algorithm stops executing, LEAN calls the OnEndOfAlgorithm method.
    def OnEndOfAlgorithm(self) -> None:
        # self.Debug(f"self.Alpha.securities:{self.alpha.securities}")
        pass
        

    def OnWarmUpFinished(self) -> None:
        self.Debug(f"Algorithm Ready@{self.Time}")
        pass