Overall Statistics |
Total Orders 112 Average Win 12.76% Average Loss -7.75% Compounding Annual Return 19.060% Drawdown 76.000% Expectancy 0.465 Start Equity 10000 End Equity 28356.86 Net Profit 183.569% Sharpe Ratio 0.491 Sortino Ratio 0.345 Probabilistic Sharpe Ratio 6.954% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 1.65 Alpha 0.132 Beta 0.768 Annual Standard Deviation 0.433 Annual Variance 0.188 Information Ratio 0.259 Tracking Error 0.416 Treynor Ratio 0.277 Total Fees $241.40 Estimated Strategy Capacity $180000000.00 Lowest Capacity Asset MSTR RBGP9S2961YD Portfolio Turnover 5.14% |
from AlgorithmImports import * from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np import pandas as pd class MLTradingAlgorithm(QCAlgorithm): def Initialize(self): # 1. Algorithm Parameters self.SetStartDate(2019, 1, 1) # Start date self.SetEndDate(2024, 12, 31) # End date self.SetCash(10000) # Initial capital # 2. Add MSTR Equity self.symbol = self.AddEquity("MSTR", Resolution.Daily).Symbol # 3. RollingWindow to Store 200 Days of TradeBar Data self.data = RollingWindow[TradeBar](200) # 4. Warm-Up Period self.SetWarmUp(200) # 5. Initialize SVM Model # probability=True so we can get class probabilities for thresholding self.model = SVC(probability=True, random_state=42) self.training_count = 0 self.is_model_trained = False # Tracks if the model is trained # 6. Schedule Training Every Monday at 10:00 AM self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday), self.TimeRules.At(10, 0), self.TrainModel) def OnData(self, data): # 7. Ensure Data Exists if not data.ContainsKey(self.symbol): return trade_bar = data[self.symbol] if trade_bar is None: return # 8. Add TradeBar to Rolling Window self.data.Add(trade_bar) # 9. Check if RollingWindow is Ready if not self.data.IsReady or self.data.Count < 200: return # Ensure Model is Fitted Before Using It if not self.is_model_trained: self.Debug("Model is not trained yet. Skipping prediction.") return # 10. Extract Features for Prediction df = self.GetFeatureDataFrame() if df is None or len(df) < 1: return latest_features = df.iloc[-1, :-1].values.reshape(1, -1) # 11. Make Predictions using Probability Threshold try: # predict_proba gives [prob_class0, prob_class1] prob_class = self.model.predict_proba(latest_features)[0][1] prediction = 1 if prob_class > 0.5 else 0 except Exception as e: self.Debug(f"Error: Model prediction failed. {e}") return # Trading Logic holdings = self.Portfolio[self.symbol].Quantity # Buy if prediction = 1 and not currently invested if prediction == 1 and holdings <= 0: self.SetHoldings(self.symbol, 1) # Sell if prediction = 0 and currently invested elif prediction == 0 and holdings > 0: self.Liquidate(self.symbol) def TrainModel(self): # 12. Prepare Training Data df = self.GetFeatureDataFrame() if df is None or len(df) < 50: # Require enough data to train self.Debug("Insufficient data for training.") return # 13. Split Data (chronological, no shuffle) X = df.iloc[:, :-1] # Features y = df.iloc[:, -1] # Target (0 or 1) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, shuffle=False, random_state=42 ) # 14. Train SVM Model self.model.fit(X_train, y_train) self.is_model_trained = True # 15. Evaluate Model Performance # (Use predicted probabilities for thresholding at 0.5) y_train_prob = self.model.predict_proba(X_train)[:,1] y_train_pred_binary = [1 if val > 0.5 else 0 for val in y_train_prob] train_accuracy = accuracy_score(y_train, y_train_pred_binary) y_test_prob = self.model.predict_proba(X_test)[:,1] y_test_pred_binary = [1 if val > 0.5 else 0 for val in y_test_prob] test_accuracy = accuracy_score(y_test, y_test_pred_binary) self.training_count += 1 self.Debug(f"Training #{self.training_count}: " f"Train Accuracy: {train_accuracy:.2%}, " f"Test Accuracy: {test_accuracy:.2%}") def GetFeatureDataFrame(self): # Wait until we have 200 data points in the rolling window if self.data.Count < 200: return None # Convert rolling window data (TradeBars) to a DataFrame close_prices = [bar.Close for bar in self.data] df = pd.DataFrame(close_prices, columns=["Close"]) # Feature Engineering df["SMA_10"] = df["Close"].rolling(window=10).mean() df["SMA_50"] = df["Close"].rolling(window=50).mean() # RSI Calculation delta = df["Close"].diff() gain = (delta.where(delta > 0, 0)).rolling(14).mean() loss = (-delta.where(delta < 0, 0)).rolling(14).mean() rs = gain / loss df["RSI"] = 100 - (100 / (1 + rs)) # MACD Calculation df["MACD"] = df["Close"].ewm(span=12, adjust=False).mean() - df["Close"].ewm(span=26, adjust=False).mean() df["MACD_Signal"] = df["MACD"].ewm(span=9, adjust=False).mean() # Historical Volatility (HV_30) df["HV_30"] = df["Close"].pct_change().rolling(window=30).std() * np.sqrt(252) # Define Target: 1 if next day's Close > today's Close, else 0 df["Target"] = (df["Close"].shift(-1) > df["Close"]).astype(int) # Remove rows with NaN values from rolling calculations df.dropna(inplace=True) return df