Overall Statistics |
Total Trades 465 Average Win 1.08% Average Loss -0.14% Compounding Annual Return 6.744% Drawdown 14.200% Expectancy 0.856 Net Profit 45.571% Sharpe Ratio 0.571 Loss Rate 78% Win Rate 22% Profit-Loss Ratio 7.49 Alpha 0.056 Beta 0.017 Annual Standard Deviation 0.103 Annual Variance 0.011 Information Ratio -0.448 Tracking Error 0.182 Treynor Ratio 3.477 Total Fees $0.00 |
class AlphaFiveTechnologyUniverse(QCAlgorithm): def Initialize(self): #1. Required: Five years of backtest history self.SetStartDate(2014, 1, 1) #2. Required: Alpha Streams Models: self.SetBrokerageModel(BrokerageName.AlphaStreams) #3. Required: Significant AUM Capacity self.SetCash(1000000) #4. Select Desired ETF Universe # See more: https://www.quantconnect.com/docs/algorithm-reference/universes self.UniverseSettings.Resolution = Resolution.Hour self.SetUniverseSelection(TechnologyETFUniverse()) self.universe = { } #5. Set Relevent Benchmark self.reference = "XLK" self.AddEquity(self.reference, Resolution.Hour) self.SetBenchmark("SPY") # Demonstration: Consolidation # See more: https://www.quantconnect.com/docs/algorithm-reference/consolidating-data self.Consolidate(self.reference, CalendarType.Weekly, self.ConsolidationDemo); # Demonstration: Scheduled Events # See more: https://www.quantconnect.com/docs/algorithm-reference/scheduled-events self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday), self.TimeRules.AfterMarketOpen(self.reference, 30), self.ScheduleDemo) # -------- # Optional: Framework Algorithm Models self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) # -------- def OnData(self, data): # Manually update the Indicators for symbol in self.universe.keys(): if data.Bars.ContainsKey(symbol): self.universe[symbol].update(data[symbol].EndTime, data[symbol].Close) def ScheduleDemo(self): for symbol, assetData in self.universe.items(): price = self.ActiveSecurities[symbol].Price if assetData.is_ready() and assetData.deviating(price): # Demonstration: Ensure to emit Insights to clearly signal intent to fund. self.EmitInsights(Insight.Price(symbol, timedelta(3), InsightDirection.Up)) def ConsolidationDemo(self, bar): self.Debug(f'{self.Time} :: {bar.Time} {bar.Close}') # Initializing ETF Universe Securities def OnSecuritiesChanged(self, changes): for s in changes.AddedSecurities: if s.Symbol not in self.universe: history = self.History(s.Symbol, 30, Resolution.Hour) self.universe[s.Symbol] = AssetData(s.Symbol, history) # Indicators+Universe Demonstration class AssetData(object): def __init__(self, symbol, history): self.std = StandardDeviation(30) self.mean = SimpleMovingAverage(7) for bar in history.itertuples(): self.update(bar.Index[1], bar.close) def is_ready(self): return self.std.IsReady def update(self, time, price): self.std.Update(time, price) self.mean.Update(time, price) def deviating(self, price): if self.std.Current.Value == 0: return False return ( (price - self.mean.Current.Value) / self.std.Current.Value ) < -3