Overall Statistics |
Total Trades 185 Average Win 4.00% Average Loss -0.90% Compounding Annual Return 8.932% Drawdown 16.900% Expectancy 1.248 Net Profit 210.300% Sharpe Ratio 0.765 Probabilistic Sharpe Ratio 15.032% Loss Rate 59% Win Rate 41% Profit-Loss Ratio 4.45 Alpha 0.08 Beta -0.012 Annual Standard Deviation 0.103 Annual Variance 0.011 Information Ratio -0.097 Tracking Error 0.215 Treynor Ratio -6.388 Total Fees $779.08 Estimated Strategy Capacity $1200000000.00 |
# SMA as support class SMA_support(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) self.SetCash(100000) ma = 100 self.symbol = self.AddEquity("SPY", Resolution.Daily).Symbol self.support = self.SMA(self.symbol, ma, Resolution.Daily) self.SetWarmUp(ma + 1) def OnData(self, data): price = self.Securities[self.symbol].Price support = self.support.Current.Value self.Plot('SMA', 'price', price) self.Plot('SMA', 'support', support) if price > support: self.SetHoldings(self.symbol, 1) else: self.SetHoldings(self.symbol, 0)