Overall Statistics |
Total Trades 486 Average Win 0.05% Average Loss 0% Compounding Annual Return 287.661% Drawdown 36.100% Expectancy 0 Net Profit 2425.479% Sharpe Ratio 1.963 Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha -0.001 Beta 0.997 Annual Standard Deviation 0.555 Annual Variance 0.308 Information Ratio -1.834 Tracking Error 0.002 Treynor Ratio 1.093 Total Fees $327.39 |
# https://www.quantconnect.com/forum/discussion/2914/help-with-simple-crypto-strategies from datetime import datetime import numpy as np import decimal as d from datetime import timedelta class DualThrustAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2015,07,01) self.SetEndDate(2017,11,15) self.SetCash(100000) equity = self.AddCrypto("BTCUSD", Resolution.Daily) self.SetBrokerageModel(BrokerageName.GDAX) self.SetBenchmark(equity.Symbol) self.syls = equity.Symbol # schedule an event to fire every trading day for a security # the time rule here tells it to fire when market open self.syl = "BTCUSD" self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(timedelta(minutes=10)),Action(self.SetSignal)) self.selltrig = None self.buytrig = None self.currentopen = None sPlot = Chart('Strategy Equity') sPlot.AddSeries(Series('Dual Thrust', SeriesType.Line, 2)) #Only for axis title override sPlot.AddSeries(Series('BTCUSD', SeriesType.Line, 2)) sPlot.AddSeries(Series('Buy Trigger', SeriesType.Line, 2)) sPlot.AddSeries(Series('Sell Trigger', SeriesType.Line, 2)) self.AddChart(sPlot) def SetSignal(self): """ history = self.History(["BTCUSD",], 4, Resolution.Daily) self.Log(str(history)) close high low open volume symbol time BTCUSD 2016-12-29 982.17 983.46 923.95 926.03 9792.346831 2016-12-30 970.72 988.88 950.50 982.28 8997.859016 2016-12-31 960.81 970.51 930.30 970.51 7945.763020 2017-01-01 973.26 973.37 949.00 961.52 3837.287886 """ history = self.History(["BTCUSD",], 4, Resolution.Daily).loc["BTCUSD"] k1 = 0.5 k2 = 0.5 self.high = history.high.values.astype(np.float32) self.low = history.low.values.astype(np.float32) self.close = history.close.values.astype(np.float32) # Pull the open price on each trading day self.currentopen = float(self.Portfolio[self.syl].Price) HH, HC, LC, LL = max(self.high), max(self.close), min(self.close), min(self.low) if HH - LC >= HC - LL: signalrange = HH - LC else: signalrange = HC - LL self.selltrig = self.currentopen - k1 * signalrange self.buytrig = self.currentopen + k2 * signalrange def OnData(self,data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' holdings = self.Portfolio[self.syl].Quantity if self.Portfolio[self.syl].Price >= self.selltrig: if holdings >= 0: self.SetHoldings(self.syl, 1.0) else: self.Liquidate(self.syl) self.SetHoldings(self.syl, 1.0) elif self.Portfolio[self.syl].Price < self.selltrig: if holdings >= 0: self.Liquidate(self.syl) self.SetHoldings(self.syl, -1.0) else: self.SetHoldings(self.syl, -1.0) self.Log("open: "+ str(self.currentopen)+" buy: "+str(self.buytrig)+" sell: "+str(self.selltrig)) self.Plot('Strategy Equity', 'BTCUSD', self.currentopen); self.Plot('Strategy Equity', 'Buy Trigger', self.buytrig); self.Plot('Strategy Equity', 'Sell Trigger', self.selltrig);