Overall Statistics |
Total Trades 10508 Average Win 0.11% Average Loss -0.12% Compounding Annual Return 11.553% Drawdown 40.700% Expectancy 0.174 Net Profit 198.577% Sharpe Ratio 0.511 Probabilistic Sharpe Ratio 2.383% Loss Rate 38% Win Rate 62% Profit-Loss Ratio 0.90 Alpha 0.036 Beta 1.009 Annual Standard Deviation 0.193 Annual Variance 0.037 Information Ratio 0.409 Tracking Error 0.089 Treynor Ratio 0.098 Total Fees $11798.84 Estimated Strategy Capacity $6300000.00 Lowest Capacity Asset SNY SFYYC8T8HEN9 Portfolio Turnover 4.77% |
#region imports from AlgorithmImports import * from sklearn.ensemble import RandomForestRegressor #endregion class RandomForestAlphaModel(AlphaModel): securities = [] scheduled_event = None time = datetime.min rebalance = False def __init__(self, algorithm, minutes_before_close, n_estimators, min_samples_split, lookback_days): self.algorithm = algorithm self.minutes_before_close = minutes_before_close self.n_estimators = n_estimators self.min_samples_split = min_samples_split self.lookback_days = lookback_days def Update(self, algorithm: QCAlgorithm, data: Slice) -> List[Insight]: if not self.rebalance or data.QuoteBars.Count == 0: return [] # Fetch history on our universe symbols = [s.Symbol for s in self.securities] df = algorithm.History(symbols, 2, Resolution.Daily, dataNormalizationMode=DataNormalizationMode.ScaledRaw) if df.empty: return [] self.rebalance = False # Make all of them into a single time index. df = df.close.unstack(level=0) # Feature engineer the data for input input_ = df.diff() * 0.5 + df * 0.5 input_ = input_.iloc[-1].fillna(0).values.reshape(1, -1) # Predict the expected price predictions = self.regressor.predict(input_) # Get the expected return predictions = (predictions - df.iloc[-1].values) / df.iloc[-1].values predictions = predictions.flatten() insights = [] for i in range(len(predictions)): insights.append( Insight.Price(df.columns[i], timedelta(5), InsightDirection.Up, predictions[i]) ) algorithm.Insights.Cancel(symbols) return insights def train_model(self): # Initialize the Random Forest Regressor self.regressor = RandomForestRegressor(n_estimators=self.n_estimators, min_samples_split=self.min_samples_split, random_state = 1990) # Get historical data history = self.algorithm.History([s.Symbol for s in self.securities], self.lookback_days, Resolution.Daily, dataNormalizationMode=DataNormalizationMode.ScaledRaw) # Select the close column and then call the unstack method. df = history['close'].unstack(level=0) # Feature engineer the data for input. input_ = df.diff() * 0.5 + df * 0.5 input_ = input_.iloc[1:].ffill().fillna(0) # Shift the data for 1-step backward as training output result. output = df.shift(-1).iloc[:-1].ffill().fillna(0) # Fit the regressor self.regressor.fit(input_, output) def before_market_close(self): if self.time < self.algorithm.Time: self.train_model() self.time = Expiry.EndOfMonth(self.algorithm.Time) self.rebalance = True def OnSecuritiesChanged(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None: for security in changes.RemovedSecurities: if security in self.securities: self.securities.remove(security) for security in changes.AddedSecurities: self.securities.append(security) # Add Scheduled Event if self.scheduled_event == None: symbol = security.Symbol self.scheduled_event = algorithm.Schedule.On( algorithm.DateRules.EveryDay(symbol), algorithm.TimeRules.BeforeMarketClose(symbol, self.minutes_before_close), self.before_market_close ) self.train_model()
# region imports from AlgorithmImports import * from Selection.UniverseSelectionModel import UniverseSelectionModel from QuantConnect.Data.UniverseSelection import * from alpha import RandomForestAlphaModel from portfolio import MeanVarianceOptimizationPortfolioConstructionModel # endregion class RandomForestAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2007, 1, 1) self.SetEndDate(2017, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw self.UniverseSettings.Leverage = 1 self.AddUniverseSelection(MyFundamentalUniverseSelectionModel(self.UniverseSettings)) self.SetBenchmark("SPY") self.AddAlpha(RandomForestAlphaModel( self, self.GetParameter("minutes_before_close", 5), self.GetParameter("n_estimators", 100), self.GetParameter("min_samples_split", 5), self.GetParameter("lookback_days", 360) )) self.SetPortfolioConstruction(MeanVarianceOptimizationPortfolioConstructionModel(self, lambda time: None, PortfolioBias.Long, period=self.GetParameter("pcm_periods", 5))) self.AddRiskManagement(NullRiskManagementModel()) self.SetExecution(ImmediateExecutionModel()) self.SetWarmUp(timedelta(200)) self.symbols = None class MyFundamentalUniverseSelectionModel(FineFundamentalUniverseSelectionModel): def __init__(self, universe_settings: UniverseSettings) -> None: super().__init__(self.SelectCoarse, self.SelectFine, universe_settings) def SelectCoarse(self, coarse: List[CoarseFundamental]) -> List[Symbol]: filtered_coarse = [x.Symbol for x in coarse if x.Volume > 1e5 and x.Price > SimpleMovingAverage(20).Current.Value and x.Price > SimpleMovingAverage(50).Current.Value and x.Price > SimpleMovingAverage(200).Current.Value ] return filtered_coarse def SelectFine(self, fine: List[FineFundamental]) -> List[Symbol]: filtered_fine = [x for x in fine if x.MarketCap > 2e9 and x.ValuationRatios.PriceChange1M > 0 and x.OperationRatios.RevenueGrowth.ThreeMonths > 0 and x.OperationRatios.OperationIncomeGrowth.ThreeMonths > 0 and x.OperationRatios.NetIncomeGrowth.ThreeMonths > 0 and x.OperationRatios.NetIncomeContOpsGrowth.ThreeMonths > 0 and x.OperationRatios.CFOGrowth.OneYear > 0 and x.OperationRatios.FCFGrowth.OneYear > 0 ] top = sorted(filtered_fine, key = lambda x: x.MarketCap, reverse=True)[:25] self.symbols = [x.Symbol for x in top] return self.symbols
# We re-define the MeanVarianceOptimizationPortfolioConstructionModel because # - The model doesn't warm-up with ScaledRaw data (https://github.com/QuantConnect/Lean/issues/7239) # - The original definition doesn't reset the `roc` and `window` in the `MeanVarianceSymbolData` objects when corporate actions occur from AlgorithmImports import * from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer ### <summary> ### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory. ### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns. ### </summary> class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel): def __init__(self, algorithm, rebalance = Resolution.Daily, portfolioBias = PortfolioBias.LongShort, lookback = 1, period = 63, resolution = Resolution.Daily, targetReturn = 0.5, optimizer = None): """Initialize the model Args: rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function. If None will be ignored. The function returns the next expected rebalance time for a given algorithm UTC DateTime. The function returns null if unknown, in which case the function will be called again in the next loop. Returning current time will trigger rebalance. portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long) lookback(int): Historical return lookback period period(int): The time interval of history price to calculate the weight resolution: The resolution of the history price optimizer(class): Method used to compute the portfolio weights""" super().__init__() self.algorithm = algorithm self.lookback = lookback self.period = period self.resolution = resolution self.portfolioBias = portfolioBias self.sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0) lower = algorithm.Settings.MinAbsolutePortfolioTargetPercentage*1.1 if portfolioBias == PortfolioBias.Long else -1 upper = 0 if portfolioBias == PortfolioBias.Short else 1 self.optimizer = MinimumVariancePortfolioOptimizer(lower, upper, targetReturn) if optimizer is None else optimizer self.symbolDataBySymbol = {} self.new_insights = False def IsRebalanceDue(self, insights, algorithmUtc): if not self.new_insights: self.new_insights = len(insights) > 0 is_rebalance_due = self.new_insights and not self.algorithm.IsWarmingUp and self.algorithm.CurrentSlice.QuoteBars.Count > 0 if is_rebalance_due: self.new_insights = False return is_rebalance_due def CreateTargets(self, algorithm, insights): # Reset and warm-up indicators when corporate actions occur data = algorithm.CurrentSlice resetSymbols = [] for symbol in set(data.Dividends.Keys) | set(data.Splits.Keys): if not symbol in self.symbolDataBySymbol: continue symbolData = self.symbolDataBySymbol[symbol] if symbolData.ShouldReset(): symbolData.ClearHistory() resetSymbols.append(symbol) if resetSymbols: self.WarmUp(algorithm, resetSymbols) return super().CreateTargets(algorithm, insights) def ShouldCreateTargetForInsight(self, insight): if len(PortfolioConstructionModel.FilterInvalidInsightMagnitude(self.Algorithm, [insight])) == 0: return False symbolData = self.symbolDataBySymbol.get(insight.Symbol) if insight.Magnitude is None: self.Algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.')) return False symbolData.Add(self.Algorithm.Time, insight.Magnitude) return True def DetermineTargetPercent(self, activeInsights): """ Will determine the target percent for each insight Args: Returns: """ targets = {} # If we have no insights just return an empty target list if len(activeInsights) == 0: return targets symbols = [insight.Symbol for insight in activeInsights] # Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame returns = { str(symbol.ID) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols } returns = pd.DataFrame(returns) # The portfolio optimizer finds the optional weights for the given data weights = self.optimizer.Optimize(returns) weights = pd.Series(weights, index = returns.columns) # Create portfolio targets from the specified insights for insight in activeInsights: weight = weights[str(insight.Symbol.ID)] # don't trust the optimizer if self.portfolioBias != PortfolioBias.LongShort and self.sign(weight) != self.portfolioBias: weight = 0 targets[insight] = weight return targets def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities super().OnSecuritiesChanged(algorithm, changes) for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) symbolData.Reset() # initialize data for added securities symbols = [x.Symbol for x in changes.AddedSecurities] for symbol in [x for x in symbols if x not in self.symbolDataBySymbol]: self.symbolDataBySymbol[symbol] = self.MeanVarianceSymbolData(symbol, self.lookback, self.period) self.WarmUp(algorithm, symbols) def WarmUp(self, algorithm, symbols): history = algorithm.History[TradeBar](symbols, self.lookback * self.period + 1, self.resolution, dataNormalizationMode=DataNormalizationMode.ScaledRaw) for bars in history: for symbol, bar in bars.items(): self.symbolDataBySymbol.get(symbol).Update(bar.EndTime, bar.Value) class MeanVarianceSymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback, period): self.symbol = symbol self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback) self.roc.Updated += self.OnRateOfChangeUpdated self.window = RollingWindow[IndicatorDataPoint](period) def ShouldReset(self): # Don't need to reset when the `window` only contain data from the insight.Magnitude return self.window.Samples < self.window.Size * 2 def ClearHistory(self): self.roc.Reset() self.window.Reset() def Reset(self): self.roc.Updated -= self.OnRateOfChangeUpdated self.ClearHistory() def Update(self, time, value): return self.roc.Update(time, value) def OnRateOfChangeUpdated(self, roc, value): if roc.IsReady: self.window.Add(value) def Add(self, time, value): item = IndicatorDataPoint(self.symbol, time, value) self.window.Add(item) # Get symbols' returns, we use simple return according to # Meucci, Attilio, Quant Nugget 2: Linear vs. Compounded Returns – Common Pitfalls in Portfolio Management (May 1, 2010). # GARP Risk Professional, pp. 49-51, April 2010 , Available at SSRN: https://ssrn.com/abstract=1586656 @property def Return(self): return pd.Series( data = [x.Value for x in self.window], index = [x.EndTime for x in self.window]) @property def IsReady(self): return self.window.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.roc.Name, self.window[0])
#region imports from AlgorithmImports import * #endregion # 05/25/2023 -Set the universe data normalization mode to raw # -Added warm-up # -Made the following updates to the portfolio construction model: # - Added IsRebalanceDue to only rebalance after warm-up finishes and there is quote data # - Reset the MeanVarianceSymbolData indicator and window when corporate actions occur # - Changed the minimum portfolio weight to be algorithm.Settings.MinAbsolutePortfolioTargetPercentage*1.1 to avoid errors # -Adjusted the history requests to use scaled raw data normalization # https://www.quantconnect.com/terminal/processCache?request=embedded_backtest_587cc09bd82676a2ede5c88b100ef70b.html