Overall Statistics |
Total Trades 8096 Average Win 0.14% Average Loss -0.15% Compounding Annual Return 38.300% Drawdown 39.400% Expectancy 0.514 Net Profit 2952.908% Sharpe Ratio 1.447 Probabilistic Sharpe Ratio 80.273% Loss Rate 22% Win Rate 78% Profit-Loss Ratio 0.94 Alpha 0.351 Beta -0.053 Annual Standard Deviation 0.238 Annual Variance 0.056 Information Ratio 0.733 Tracking Error 0.288 Treynor Ratio -6.488 Total Fees $32646.00 Estimated Strategy Capacity $1300000.00 Lowest Capacity Asset TMF UBTUG7D0B7TX |
class SleepyYellowBee(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 12, 23) self.SetCash(100000) self.AddEquity("SPY", Resolution.Daily) self.SetBenchmark("SPY") # Variable to hold the last calculated benchmark value self.lastBenchmarkValue = None # Our inital benchmark value scaled to match our portfolio self.BenchmarkPerformance = self.Portfolio.TotalPortfolioValue #self.Float = self.GetParameter("self.Float") self.Float = 0.01 self.non_float = 1 - self.Float self.bear = [] # target allocations self.TQQQ_target = 0.20*self.non_float self.UPRO_target = 0.20*self.non_float self.TMF_target = 0.60*self.non_float #import equities self.AddEquity("TQQQ", Resolution.Daily) self.AddEquity("UPRO", Resolution.Daily) self.AddEquity("TYD", Resolution.Daily) self.AddEquity("TMF", Resolution.Daily) #EMAs for bear filter fast = 5 med = 40 slow = 100 self.ema_fast = self.EMA("SPY", fast) self.ema_medium = self.EMA("SPY", med) self.ema_slow = self.EMA("SPY", slow) # Slope and Concavity self.slope = IndicatorExtensions.Of(ExponentialMovingAverage(fast), self.ROCP("SPY", med, Resolution.Daily)) # slope self.concavity = IndicatorExtensions.Of(ExponentialMovingAverage(fast), IndicatorExtensions.Of(RateOfChange(fast), self.ROCP("SPY", slow, Resolution.Daily))) #concavity # self.SetWarmUp(200, Resolution.Daily) self.rebalance_date = self.Time + timedelta(days = 100) def OnData(self, data): if self.IsWarmingUp: return # when bull market if self.ema_fast > self.ema_slow: self.TQQQ_target = 0.30*self.non_float self.UPRO_target = 0.30*self.non_float self.TMF_target = 0.40*self.non_float self.Plot("BULL - BEAR", "Bull", 1) self.Plot("BULL - BEAR", "Bear", 0) self.bear=0 self.Rebalance(data) # Bear Market if self.ema_fast < self.ema_slow:# or (self.slope.Current.Value < 0 and self.concavity.Current.Value < 0): self.TQQQ_target = 0.15*self.non_float self.UPRO_target = 0.15*self.non_float self.TMF_target = 0.50*self.non_float self.Plot("BULL - BEAR", "Bull", 0) self.Plot("BULL - BEAR", "Bear", 1) self.bear=1 self.Rebalance(data) # I guess these kind of work but trigger less often: # Bear exit early if self.ema_fast > self.ema_medium and self.bear == 1: #and self.ema_slow > self.ema_medium: self.TQQQ_target = 0.40*self.non_float self.UPRO_target = 0.40*self.non_float self.TMF_target = 0.20*self.non_float self.Plot("BULL - BEAR", "Bull", 3) self.Plot("BULL - BEAR", "Bear", 0) self.bear=0 self.Rebalance(data) # Concave up if self.ema_fast < self.ema_slow and (self.slope.Current.Value > 0 and self.concavity.Current.Value > 0): self.TQQQ_target = 0.50*self.non_float self.UPRO_target = 0.30*self.non_float self.TMF_target = 0.2*self.non_float self.Plot("BULL - BEAR", "Bull", 2) self.Plot("BULL - BEAR", "Bear", 0) self.Rebalance(data) # Plot EMAs self.Plot("Benchmark", "Fast", self.ema_fast.Current.Value) self.Plot("Benchmark", "Medium", self.ema_medium.Current.Value) self.Plot("Benchmark", "Slow", self.ema_slow.Current.Value) # Plot Bear self.Plot("Bear", "Bear", self.bear) # Plot slope/concavity self.Plot("Derivatives", "Slope", self.slope.Current.Value) self.Plot("Derivatives", "Concavity", self.concavity.Current.Value) # Plot assets self.Plot("Assets", "TMF", self.Securities["TMF"].Close) self.Plot("Assets", "UPRO", self.Securities["UPRO"].Close) self.Plot("Assets", "TQQQ", self.Securities["TQQQ"].Close) #self.Plot("Assets", "TYD", self.Securities["TYD"].Close) # Check if we're not invested and then put portfolio 100% in the SPY ETF. if not self.Portfolio.Invested: self.SetHoldings("TQQQ", self.TQQQ_target) self.SetHoldings("UPRO", self.UPRO_target) self.SetHoldings("TMF", self.TMF_target) #rebalance_date = self.Time + timedelta(days = 370) if self.Time == self.rebalance_date: self.Rebalance(data) # store the current benchmark close price benchmark = self.Securities["SPY"].Close # enter our strategy if not self.Portfolio.Invested: self.Rebalance(data) # Calculate the performance of our benchmark and update our benchmark value for plotting if self.lastBenchmarkValue is not None: self.BenchmarkPerformance = self.BenchmarkPerformance * (benchmark/self.lastBenchmarkValue) # store today's benchmark close price for use tomorrow self.lastBenchmarkValue = benchmark # make our plots self.Plot("Strategy vs Benchmark", "Portfolio Value", self.Portfolio.TotalPortfolioValue) self.Plot("Strategy vs Benchmark", "Benchmark", self.BenchmarkPerformance) def Rebalance(self, data): self.SetHoldings("TQQQ", self.TQQQ_target) self.SetHoldings("UPRO", self.UPRO_target) self.SetHoldings("TMF", self.TMF_target) self.rebalance_date = self.Time + timedelta(days = 100) self.Log("Rebalanced")