Overall Statistics |
Total Orders 55678 Average Win 0.09% Average Loss -0.11% Compounding Annual Return 70.961% Drawdown 22.400% Expectancy 0.033 Start Equity 1000000 End Equity 2572066.96 Net Profit 157.207% Sharpe Ratio 1.98 Sortino Ratio 2.382 Probabilistic Sharpe Ratio 90.557% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 0.86 Alpha 0.431 Beta -0.087 Annual Standard Deviation 0.216 Annual Variance 0.047 Information Ratio 1.573 Tracking Error 0.247 Treynor Ratio -4.918 Total Fees â‚®0.00 Estimated Strategy Capacity â‚®320000.00 Lowest Capacity Asset BTCUSDT 18N Portfolio Turnover 8464.84% |
#region imports using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; using System.Globalization; using System.Linq; using System.Text; using Newtonsoft.Json; using QuantConnect; using QuantConnect.Algorithm; using QuantConnect.Algorithm.Framework; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Portfolio.SignalExports; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Algorithm.Selection; using QuantConnect.Api; using QuantConnect.Benchmarks; using QuantConnect.Brokerages; using QuantConnect.Commands; using QuantConnect.Configuration; using QuantConnect.Data; using QuantConnect.Data.Auxiliary; using QuantConnect.Data.Consolidators; using QuantConnect.Data.Custom; using QuantConnect.Data.Custom.IconicTypes; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.Shortable; using QuantConnect.Data.UniverseSelection; using QuantConnect.DataSource; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Notifications; using QuantConnect.Orders; using QuantConnect.Orders.Fees; using QuantConnect.Orders.Fills; using QuantConnect.Orders.OptionExercise; using QuantConnect.Orders.Slippage; using QuantConnect.Orders.TimeInForces; using QuantConnect.Parameters; using QuantConnect.Python; using QuantConnect.Scheduling; using QuantConnect.Securities; using QuantConnect.Securities.Crypto; using QuantConnect.Securities.CryptoFuture; using QuantConnect.Securities.Equity; using QuantConnect.Securities.Forex; using QuantConnect.Securities.Future; using QuantConnect.Securities.IndexOption; using QuantConnect.Securities.Interfaces; using QuantConnect.Securities.Option; using QuantConnect.Securities.Positions; using QuantConnect.Securities.Volatility; using QuantConnect.Statistics; using QuantConnect.Storage; using QuantConnect.Util; using Calendar = QuantConnect.Data.Consolidators.Calendar; using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm; using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm; #endregion namespace QuantConnect.Algorithm.CSharp { public class CryptoExampleStrategyPublic : QCAlgorithm { public static string ModelParamsFileName = "baseline_model_params.json"; public static string ThresholdArrayFileName = "baseline_threshold_array.json"; public class ModelParams { [JsonProperty("feature_cols")] public string[] FeatureCols { get; set; } [JsonProperty("coefficients")] public decimal[] Coefficients { get; set; } [JsonProperty("intercept")] public decimal Intercept { get; set; } [JsonProperty("center")] public decimal[] Center { get; set; } [JsonProperty("scale")] public decimal[] Scale { get; set; } } // Ring buffer for prediction history private class RingBuffer<T> { private T[] _buffer; private DateTime[] _timestamps; private int _size; private int _currentIndex; private int _count; public RingBuffer(int size) { _size = size; _buffer = new T[size]; _timestamps = new DateTime[size]; _currentIndex = 0; _count = 0; } public void Add(DateTime timestamp, T item) { _timestamps[_currentIndex] = timestamp; _buffer[_currentIndex] = item; _currentIndex = (_currentIndex + 1) % _size; if (_count < _size) _count++; } public int Count => _count; public T GetByIndex(int index) { if (index < 0 || index >= _count) throw new IndexOutOfRangeException(); int actualIndex = (_currentIndex - _count + index + _size) % _size; return _buffer[actualIndex]; } public DateTime GetTimestampByIndex(int index) { if (index < 0 || index >= _count) throw new IndexOutOfRangeException(); int actualIndex = (_currentIndex - _count + index + _size) % _size; return _timestamps[actualIndex]; } public T GetLatest() { if (_count == 0) throw new InvalidOperationException("Buffer is empty"); int index = (_currentIndex - 1 + _size) % _size; return _buffer[index]; } public DateTime GetLatestTimestamp() { if (_count == 0) throw new InvalidOperationException("Buffer is empty"); int index = (_currentIndex - 1 + _size) % _size; return _timestamps[index]; } public List<T> GetItems() { List<T> result = new List<T>(_count); for (int i = 0; i < _count; i++) { int index = (_currentIndex - _count + i + _size) % _size; result.Add(_buffer[index]); } return result; } public List<KeyValuePair<DateTime, T>> GetAllWithTimestamps() { List<KeyValuePair<DateTime, T>> result = new List<KeyValuePair<DateTime, T>>( _count ); for (int i = 0; i < _count; i++) { int index = (_currentIndex - _count + i + _size) % _size; result.Add(new KeyValuePair<DateTime, T>(_timestamps[index], _buffer[index])); } return result; } } private enum ModelState { Normal, Suspicious, Reversed, HighlyUnreliable, } private Symbol _btcusdt; private ModelParams _modelParams; private decimal[] _thresholdArr; private bool _modelLoaded = false; private decimal _positionSize = 0.98m; private decimal _leverage = 1.0m; private decimal _enterPositionThreshold = 0.04m; private decimal _exitPositionThreshold = 0.60m; private decimal _takeProfitTarget = 0.01m; private decimal _stopLossLevel = 1m; private decimal _modelReverseThreshold = 1m; private ModelState _currentModelState = ModelState.Normal; private int _consecutiveLosses = 0; private int _consecutiveWins = 0; private int _consecutiveLossesThreshold = 2; private int _consecutiveWinsThreshold = 2; private DateTime _stateTransitionTime; private decimal _stateTransitionPrice; private DateTime _positionEntryTime; private bool _inLongPosition = false; private bool _inShortPosition = false; private decimal _entryPrice = 0m; private int _positionHoldingWindow = 10; private int _earlyProfitMinHoldingTime = 1; private RingBuffer<decimal> _predictionHistory; private int _maxPredictionHistory = 60; private HashSet<DateTime> _testDays = new HashSet<DateTime>(); private List<TradeRecord> _tradeRecords = new List<TradeRecord>(); private class TradeRecord { public DateTime EntryTime { get; set; } public DateTime ExitTime { get; set; } public decimal EntryPrice { get; set; } public decimal ExitPrice { get; set; } public string Direction { get; set; } public decimal PnL { get; set; } public string ExitReason { get; set; } public ModelState ModelStateAtEntry { get; set; } public decimal OriginalPrediction { get; set; } public decimal AdjustedPrediction { get; set; } } public override void Initialize() { SetStartDate(2023, 7, 1); // SetEndDate(2023, 10, 1); SetEndDate(DateTime.Now); SetAccountCurrency("USDT"); SetCash(1_000_000); SetBrokerageModel(new DefaultBrokerageModel()); SetTimeZone(TimeZones.Utc); var security = AddCrypto( "BTCUSDT", Resolution.Minute, LiveMode ? null: Market.Binance, fillForward: true, leverage: _leverage ); security.SetFeeModel(new ConstantFeeModel(0.0m)); _btcusdt = security.Symbol; _predictionHistory = new RingBuffer<decimal>(_maxPredictionHistory); // Reload model every 00:00 UTC // Schedule.On( // DateRules.EveryDay("BTCUSDT"), // TimeRules.At(new TimeSpan(00, 00, 00)), // LoadModelParameters // ); // Initialize test days // InitializeTestDays(); // // Reset state machine at start of each day // Schedule.On( // DateRules.EveryDay("BTCUSDT"), // TimeRules.At(00, 00, 01), // Just after midnight // ResetStateMachine // ); // Liquidate at the start of each day // Schedule.On( // DateRules.EveryDay("BTCUSDT"), // TimeRules.At(00, 00, 05), // Just after midnight // CheckAndLiquidateForNonTestDays // ); ResetStateMachine(); LoadModelParameters(); LoadThresholdArray(); // We use 2x leverage for quantconnect live paper trading for the high sharpe ratio if (LiveMode) { _positionSize = 0.95m; // _leverage = 2.0m; } // TODO: Maybe buy some futures for hedging. } private void ResetStateMachine() { if (_currentModelState != ModelState.Normal) { Log( $"Resetting state machine. Previous state: {_currentModelState}, Consecutive losses: {_consecutiveLosses}, Consecutive wins: {_consecutiveWins}" ); } _currentModelState = ModelState.Normal; _consecutiveLosses = 0; _consecutiveWins = 0; Log( $"State machine reset for {Time.Date:yyyy-MM-dd}. Now in {_currentModelState} state." ); } private void InitializeTestDays() { string[] testDaysStrings = new string[] {}; foreach (string dateStr in testDaysStrings) { DateTime date = DateTime.Parse(dateStr); _testDays.Add(date.Date); // Store just the date part, no time } Log($"Initialized {_testDays.Count} test days for trading"); } private void CheckAndLiquidateForNonTestDays() { DateTime currentDate = Time.Date; // Check if the current day is a test day if (!LiveMode && !_testDays.Contains(currentDate)) { // If not a test day, liquidate all positions if (Portfolio.Invested) { Liquidate(_btcusdt); _inLongPosition = false; _inShortPosition = false; Log($"Not a test day: Liquidated all positions on {currentDate:yyyy-MM-dd}"); } } else { // Log($"Test day: Trading enabled for {currentDate:yyyy-MM-dd}"); // in live mode or test day, do not liquidate Log($"LiveMode or test day: Trading enabled for {currentDate:yyyy-MM-dd}"); } } public override void OnData(Slice slice) { Log($"[OnData] - {Time} - Before Check {_btcusdt}, _modelLoaded {_modelLoaded}"); if (!slice.Bars.ContainsKey(_btcusdt) || !_modelLoaded) return; Log($"[OnData] - {Time} - After Check: {slice.Bars[_btcusdt]}"); // Only trade on test days when LiveMode == false // if (!LiveMode && !_testDays.Contains(Time.Date)) // return; var bar = slice.Bars[_btcusdt]; decimal[] features = CalculateFeatures(bar); decimal originalPredictProb = PredictProbability(features); decimal adjustedPredictProb = AdjustPredictionByState(originalPredictProb); decimal percentile = GetProbabilityPercentile(adjustedPredictProb); _predictionHistory.Add(Time, originalPredictProb); Log( $"Time: {Time}, Price: {bar.Close}, Original Prediction: {originalPredictProb:F4}, " + $"Adjusted Prediction: {adjustedPredictProb:F4}, Percentile: {percentile:P2}, State: {_currentModelState}" ); bool shouldBeLong = percentile >= (1m - _enterPositionThreshold / 2m); bool shouldBeShort = percentile <= (_enterPositionThreshold / 2m); bool shouldExitLong = percentile <= (_exitPositionThreshold / 2m); bool shouldExitShort = percentile >= (1m - _exitPositionThreshold / 2m); bool holdingTimeElapsed = false; bool earlyProfitTimeElapsed = false; decimal currentPnlPercent = 0m; if (_inLongPosition || _inShortPosition) { TimeSpan holdingTime = Time - _positionEntryTime; holdingTimeElapsed = holdingTime.TotalMinutes >= _positionHoldingWindow; earlyProfitTimeElapsed = holdingTime.TotalMinutes >= _earlyProfitMinHoldingTime; if (_inLongPosition) { currentPnlPercent = (bar.Close - _entryPrice) / _entryPrice * 100m; } else if (_inShortPosition) { currentPnlPercent = (_entryPrice - bar.Close) / _entryPrice * 100m; } if (holdingTimeElapsed) { Log($"Position holding window of {_positionHoldingWindow} minutes elapsed"); } } bool takeProfitTriggered = earlyProfitTimeElapsed && currentPnlPercent >= _takeProfitTarget; bool stopLossTriggered = currentPnlPercent <= -_stopLossLevel; if (_inLongPosition) { // Exit if: // 1. opposite signal // 2. holding time elapsed // 3. exit threshold reached // 4. take profit target hit // 5. stop loss triggered if ( shouldBeShort || holdingTimeElapsed || shouldExitLong || takeProfitTriggered || stopLossTriggered ) { string reason = shouldBeShort ? "Opposite signal" : holdingTimeElapsed ? "Holding time elapsed" : takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F2}%" : stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F2}%" : "Exit threshold reached"; ClosePosition( "LONG", bar.Close, reason, originalPredictProb, adjustedPredictProb ); // Check if stop loss should trigger state machine transition if (stopLossTriggered) { UpdateStateMachineOnLoss(); } else if (takeProfitTriggered) { UpdateStateMachineOnWin(); } } } else if (_inShortPosition) { // Exit if: // 1. opposite signal // 2. holding time elapsed // 3. exit threshold reached // 4. take profit target hit // 5. stop loss triggered if ( shouldBeLong || holdingTimeElapsed || shouldExitShort || takeProfitTriggered || stopLossTriggered ) { string reason = shouldBeLong ? "Opposite signal" : holdingTimeElapsed ? "Holding time elapsed" : takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F2}%" : stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F2}%" : "Exit threshold reached"; ClosePosition( "SHORT", bar.Close, reason, originalPredictProb, adjustedPredictProb ); // Check if stop loss should trigger state machine transition if (stopLossTriggered) { UpdateStateMachineOnLoss(); } else if (takeProfitTriggered) { UpdateStateMachineOnWin(); } } } // Enter new positions if we're not already in a position if (!_inLongPosition && !_inShortPosition) { if (shouldBeLong) { EnterLong(bar.Close, originalPredictProb, adjustedPredictProb); } else if (shouldBeShort) { EnterShort(bar.Close, originalPredictProb, adjustedPredictProb); } } } private decimal AdjustPredictionByState(decimal originalPrediction) { switch (_currentModelState) { case ModelState.Normal: // No adjustment needed return originalPrediction; case ModelState.Suspicious: // Reduce confidence by moving prediction toward 0.5 return 0.5m + (originalPrediction - 0.5m) * 0.5m; case ModelState.Reversed: // Invert the prediction (1-p) return 1m - originalPrediction; case ModelState.HighlyUnreliable: // Just return 0.5 (no clear signal) return 0.5m; default: return originalPrediction; } } private void UpdateStateMachineOnLoss() { _consecutiveLosses++; _consecutiveWins = 0; // Transition state machine based on consecutive losses switch (_currentModelState) { case ModelState.Normal: if (_consecutiveLosses >= _consecutiveLossesThreshold) { _currentModelState = ModelState.Suspicious; _stateTransitionTime = Time; Log( $"State transition: Normal -> Suspicious after {_consecutiveLosses} consecutive losses" ); } break; case ModelState.Suspicious: if (_consecutiveLosses >= _consecutiveLossesThreshold * 2) { _currentModelState = ModelState.Reversed; _stateTransitionTime = Time; Log( $"State transition: Suspicious -> Reversed after {_consecutiveLosses} consecutive losses" ); } break; case ModelState.Reversed: if (_consecutiveLosses >= _consecutiveLossesThreshold * 3) { _currentModelState = ModelState.HighlyUnreliable; _stateTransitionTime = Time; Log( $"State transition: Reversed -> HighlyUnreliable after {_consecutiveLosses} consecutive losses" ); } break; } } private void UpdateStateMachineOnWin() { _consecutiveWins++; _consecutiveLosses = 0; // Transition state machine based on consecutive wins switch (_currentModelState) { case ModelState.HighlyUnreliable: if (_consecutiveWins >= _consecutiveWinsThreshold) { _currentModelState = ModelState.Reversed; _stateTransitionTime = Time; Log( $"State transition: HighlyUnreliable -> Reversed after {_consecutiveWins} consecutive wins" ); } break; case ModelState.Reversed: if (_consecutiveWins >= _consecutiveWinsThreshold * 2) { _currentModelState = ModelState.Suspicious; _stateTransitionTime = Time; Log( $"State transition: Reversed -> Suspicious after {_consecutiveWins} consecutive wins" ); } break; case ModelState.Suspicious: if (_consecutiveWins >= _consecutiveWinsThreshold * 3) { _currentModelState = ModelState.Normal; _stateTransitionTime = Time; Log( $"State transition: Suspicious -> Normal after {_consecutiveWins} consecutive wins" ); } break; } } private void EnterLong( decimal price, decimal originalPrediction, decimal adjustedPrediction ) { SetHoldings(_btcusdt, _positionSize); _inLongPosition = true; _inShortPosition = false; _positionEntryTime = Time; _entryPrice = price; Log( $"ENTERED LONG at {Time}, Price: {price}, Position Size: {_positionSize}, Model State: {_currentModelState}" ); var trade = new TradeRecord { EntryTime = Time, EntryPrice = price, Direction = "LONG", ModelStateAtEntry = _currentModelState, OriginalPrediction = originalPrediction, AdjustedPrediction = adjustedPrediction, }; _tradeRecords.Add(trade); } private void EnterShort( decimal price, decimal originalPrediction, decimal adjustedPrediction ) { SetHoldings(_btcusdt, -_positionSize); _inShortPosition = true; _inLongPosition = false; _positionEntryTime = Time; _entryPrice = price; Log( $"ENTERED SHORT at {Time}, Price: {price}, Position Size: {_positionSize}, Model State: {_currentModelState}" ); var trade = new TradeRecord { EntryTime = Time, EntryPrice = price, Direction = "SHORT", ModelStateAtEntry = _currentModelState, OriginalPrediction = originalPrediction, AdjustedPrediction = adjustedPrediction, }; _tradeRecords.Add(trade); } private void ClosePosition( string positionType, decimal price, string reason, decimal originalPrediction, decimal adjustedPrediction ) { Liquidate(_btcusdt); decimal pnl = 0; if (positionType == "LONG") { pnl = (price - _entryPrice) / _entryPrice * 100; _inLongPosition = false; } else { pnl = (_entryPrice - price) / _entryPrice * 100; _inShortPosition = false; } Log( $"EXITED {positionType} at {Time}, Price: {price}, PnL: {pnl:F2}%, Reason: {reason}, Model State: {_currentModelState}" ); if (_tradeRecords.Count > 0) { var lastTrade = _tradeRecords[_tradeRecords.Count - 1]; lastTrade.ExitTime = Time; lastTrade.ExitPrice = price; lastTrade.PnL = pnl; lastTrade.ExitReason = reason; } } private decimal[] CalculateFeatures(TradeBar bar) { decimal[] features = new decimal[_modelParams.FeatureCols.Length]; int hour = Time.Hour; int minute = Time.Minute; decimal dayPct = (hour * 60 + minute) / (24m * 60m); for (int i = 0; i < _modelParams.FeatureCols.Length; i++) { switch (_modelParams.FeatureCols[i]) { case "close_open_ratio": features[i] = bar.Close / bar.Open; break; case "high_low_ratio": features[i] = bar.High / bar.Low; break; case "day_pct": features[i] = dayPct; break; default: Log($"Unknown feature: {_modelParams.FeatureCols[i]}"); features[i] = 0; break; } } return features; } private void LoadModelParameters() { if (!ObjectStore.ContainsKey(ModelParamsFileName)) { Log($"Model parameters file {ModelParamsFileName} not found."); return; } string jsonStr = ObjectStore.Read(ModelParamsFileName); try { _modelParams = JsonConvert.DeserializeObject<ModelParams>(jsonStr); var formattedJson = JsonConvert.SerializeObject(_modelParams, Formatting.Indented); Log($"Model parameters loaded:\n{formattedJson}"); _modelLoaded = true; } catch (Exception ex) { Log($"Error deserializing JSON: {ex.Message}"); } } private void LoadThresholdArray() { if (!ObjectStore.ContainsKey(ThresholdArrayFileName)) { Log($"Threshold array file {ThresholdArrayFileName} not found."); InitializeDefaultThresholdArray(); return; } string jsonStr = ObjectStore.Read(ThresholdArrayFileName); try { _thresholdArr = JsonConvert.DeserializeObject<decimal[]>(jsonStr); Log($"Threshold array loaded with {_thresholdArr.Length} values."); } catch (Exception ex) { Log($"Error deserializing threshold array JSON: {ex.Message}"); InitializeDefaultThresholdArray(); } } private void InitializeDefaultThresholdArray() { // Create a default threshold array with 200 points (0.5% resolution) // Values will be distributed according to a Gaussian (Normal) distribution int arraySize = 200; _thresholdArr = new decimal[arraySize]; double mean = 0.5; double stdDev = 0.15; for (int i = 0; i < arraySize; i++) { double x = (double)i / (arraySize - 1); // Apply sigmoid function to approximate Gaussian CDF // This gives a reasonable S-shaped curve similar to the normal distribution CDF double z = (x - mean) / stdDev; double probability = 1.0 / (1.0 + Math.Exp(-z * 1.702)); _thresholdArr[i] = (decimal)probability; } Array.Sort(_thresholdArr); Log( $"Initialized default threshold array with {arraySize} Gaussian-distributed values." ); } private decimal PredictProbability(decimal[] features) { // sklearn RobustScaler equivalent decimal[] scaledFeatures = new decimal[features.Length]; for (int i = 0; i < features.Length; i++) { scaledFeatures[i] = (features[i] - _modelParams.Center[i]) / _modelParams.Scale[i]; } decimal logit = _modelParams.Intercept; for (int i = 0; i < scaledFeatures.Length; i++) { logit += scaledFeatures[i] * _modelParams.Coefficients[i]; } decimal prob = 1m / (1m + (decimal)Math.Exp(-(double)logit)); return prob; } private decimal GetProbabilityPercentile(decimal probability) { // If threshold array is not loaded, initialize it with default values if (_thresholdArr == null || _thresholdArr.Length == 0) { InitializeDefaultThresholdArray(); } int index = Array.BinarySearch(_thresholdArr, probability); if (index >= 0) { return (decimal)index / (_thresholdArr.Length - 1); } else { // No direct match - get the insertion point int insertPoint = ~index; if (insertPoint == 0) { return 0m; // Probability is lower than all values in the array } else if (insertPoint >= _thresholdArr.Length) { return 1m; // Probability is higher than all values in the array } else { // Interpolate between the two closest points decimal lowerProb = _thresholdArr[insertPoint - 1]; decimal upperProb = _thresholdArr[insertPoint]; decimal lowerPct = (decimal)(insertPoint - 1) / (_thresholdArr.Length - 1); decimal upperPct = (decimal)insertPoint / (_thresholdArr.Length - 1); // Linear interpolation decimal ratio = (probability - lowerProb) / (upperProb - lowerProb); return lowerPct + ratio * (upperPct - lowerPct); } } } } }