Overall Statistics |
Total Trades 699 Average Win 0.74% Average Loss -0.33% Compounding Annual Return 263.377% Drawdown 21.000% Expectancy 0.949 Net Profit 161.220% Sharpe Ratio 4.202 Probabilistic Sharpe Ratio 94.793% Loss Rate 40% Win Rate 60% Profit-Loss Ratio 2.23 Alpha 1.269 Beta 2.823 Annual Standard Deviation 0.388 Annual Variance 0.15 Information Ratio 4.936 Tracking Error 0.304 Treynor Ratio 0.577 Total Fees $3199.37 Estimated Strategy Capacity $1400000.00 Lowest Capacity Asset UGL U85WJOCE24BP Portfolio Turnover 27.01% |
from AlgorithmImports import * import math import pandas as pd from cmath import sqrt from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data.Custom import * from QuantConnect.Python import PythonData import csv import io import time import json class IntelligentSkyRodent(QCAlgorithm): def Initialize(self): self.cash = 100000 self.buffer_pct = 0.01 self.SetStartDate(2023, 1, 1) self.SetEndDate(2023, 10, 2) self.SetCash(self.cash) self.equities = ['MU','CZR','UVIX','ENPH','AMEH', 'ERIC', 'GNRC','BULZ','VCIT', 'UDN', 'SARK', 'AMD', 'FNGU', 'TSLL', 'AEHR', 'MSTR', 'TARK', 'XLY', 'QQQE', 'VOOG', 'VOOV', 'VTV', 'HIBL', 'XLK', 'XLP', 'SVXY', 'QID', 'TBF', 'TSLA', 'LQD', 'VTIP', 'EDV', 'STIP', 'SPTL', 'IEI', 'USDU', 'SQQQ', 'VIXM', 'SPXU', 'QQQ', 'BSV', 'TQQQ', 'SPY', 'DBC', 'SHV', 'IAU', 'VEA', 'UTSL', 'UVXY', 'UPRO', 'EFA', 'EEM', 'TLT', 'SHY', 'GLD', 'SLV', 'USO', 'WEAT', 'CORN', 'SH', 'DRN', 'PDBC', 'COMT', 'KOLD', 'BOIL', 'ESPO', 'PEJ', 'UGL', 'URE', 'VXX', 'UUP', 'BND', 'BIL', 'DUST', 'JDST', 'JNUG', 'GUSH', 'DBA', 'DBB', 'COM', 'PALL', 'AGQ', 'BAL', 'WOOD', 'URA', 'SCO', 'UCO', 'DBO', 'TAGS', 'CANE', 'REMX', 'COPX', 'IEF', 'SPDN', 'CHAD', 'DRIP', 'SPUU', 'INDL', 'BRZU', 'ERX', 'ERY', 'CWEB', 'CHAU', 'KORU', 'MEXX', 'EDZ', 'EURL', 'YINN', 'YANG', 'TNA', 'TZA', 'SPXL', 'SPXS', 'MIDU', 'TYD', 'TYO', 'TMF', 'TMV', 'TECL', 'TECS', 'SOXL', 'SOXS', 'LABU', 'LABD', 'RETL', 'DPST', 'DRV', 'PILL', 'CURE', 'FAZ', 'FAS', 'EWA', 'EWGS', 'EWG', 'EWP', 'EWQ', 'EWU', 'EWJ', 'EWI', 'EWN', 'ECC', 'NURE', 'VNQI', 'VNQ', 'VDC', 'VIS', 'VGT', 'VAW', 'VPU', 'VOX', 'VFH', 'VHT', 'VDE', 'SMH', 'DIA', 'UDOW', 'PSQ', 'SOXX', 'VTI', 'COST', 'UNH', 'SPHB', 'BTAL', 'VIXY', 'WEBL', 'WEBS', 'UBT', 'PST', 'TLH', 'QLD', 'SQM', 'SSO', 'SD', 'DGRO', 'SCHD', 'SGOL', 'TIP', 'DUG', 'EWZ', 'TBX', 'VGIT', 'VGLT', 'CCOR', 'LBAY', 'NRGD', 'PHDG', 'SPHD', 'COWZ', 'CTA', 'DBMF', 'GDMA', 'VIGI', 'AGG', 'NOBL', 'FAAR', 'BITO', 'FTLS', 'MORT', 'FNDX', 'GLL', 'NTSX', 'RWL', 'VLUE', 'IJR', 'SPYG', 'VXUS', 'AAL', 'AEP', 'AFL', 'C', 'CMCSA', 'DUK', 'EXC', 'F', 'GM', 'GOOGL', 'INTC', 'JNJ', 'KO', 'MET', 'NWE', 'OXY', 'PFE', 'RTX', 'SNY', 'SO', 'T', 'TMUS', 'VZ', 'WFC', 'WMT', 'AMZN', 'MSFT', 'NVDA', 'TSM', 'BA', 'CB', 'COKE', 'FDX', 'GE', 'LMT', 'MRK', 'NVEC', 'ORCL', 'PEP', 'V', 'DBE', 'BRK-B', 'CRUS', 'INFY', 'KMLM', 'NSYS', 'SCHG', 'SGML', 'SLDP', 'ARKQ', 'XLU', 'XLV', 'ULTA', 'AAPL', 'AMZU', 'BAD', 'DDM', 'IYH', 'JPM', 'PM', 'XOM', 'EUO', 'YCS', 'MVV', 'USD', 'TMF', 'SPXL', 'EPI', 'IYK', 'CURE', 'DIG', 'XLU'] self.MKT = self.AddEquity("QQQ",Resolution.Daily).Symbol self.mkt = [] for equity in self.equities: self.AddEquity(equity,Resolution.Minute) self.Securities[equity].SetDataNormalizationMode(DataNormalizationMode.Adjusted) self.AddEquity('BIL',Resolution.Minute) self.Securities['BIL'].SetDataNormalizationMode(DataNormalizationMode.TotalReturn) self.PT1 = 0.5 #TQQQFTLT self.PT2 = 0.14 #SOXX self.PT3 = 0.26 #TQQQorNOT self.PT4 = 0.1 #BetaBaller self.PT5 = 0.00 #Bestndays #self.PT6 = 0.25 #Slowloss self.TA1110 = 1 self.TA1111 = 0.45 self.TA1120 = 0.45 self.TA1121 = 0.15 self.TA1130 = 0.02 self.TA1140 = 0.08 self.TA1210 = 1 self.TA6 = 1 self.HT1 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS1 = {str(i).zfill(2): [] for i in range(1,10)} self.HT2 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS2 = {str(i).zfill(2): [] for i in range(1,10)} self.HT3 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS3 = {str(i).zfill(2): [] for i in range(1,10)} self.HT4 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS4 = {str(i).zfill(2): [] for i in range(1,10)} self.HT5 = {str(i).zfill(2): 0 for i in range(1,40)} self.HTS5 = {str(i).zfill(2): [] for i in range(1,40)} #self.HT6 = {str(i).zfill(2): 0 for i in range(1,10)} #self.HTS6 = {str(i).zfill(2): [] for i in range(1,10)} self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY",3), self.FunctionBeforeMarketClose) def RSI(self,equity,period): extension = min(period*5,250) r_w = RollingWindow[float](extension) history = self.History(equity,extension - 1,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: average_gain = 0 average_loss = 0 gain = 0 loss = 0 for i in range(extension - 1,extension - period -1,-1): gain += max(r_w[i-1] - r_w[i],0) loss += abs(min(r_w[i-1] - r_w[i],0)) average_gain = gain/period average_loss = loss/period for i in range(extension - period - 1,0,-1): average_gain = (average_gain*(period-1) + max(r_w[i-1] - r_w[i],0))/period average_loss = (average_loss*(period-1) + abs(min(r_w[i-1] - r_w[i],0)))/period if average_loss == 0: return 100 else: rsi = 100 - (100/(1 + average_gain / average_loss)) return rsi else: return None def CumReturn(self,equity,period): history = self.History(equity,period,Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = self.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) first_price = closing_prices.iloc[0] if first_price == 0: return None else: return_val = (current_price / first_price) - 1 return return_val def STD(self,equity,period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity,period,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period,0,-1): daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfstd = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfstd['r_w_return'].std() if std == 0: return 0 else: return std else: return 0 def MaxDD(self,equity,period): history = self.History(equity,period - 1,Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = self.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) rolling_max = closing_prices.cummax() drawdowns = (rolling_max - closing_prices) / rolling_max max_dd = drawdowns.min() return max_dd def SMA(self,equity,period): r_w = RollingWindow[float](period) history = self.History(equity,period - 1,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: sma = sum(r_w) / period return sma else: return 0 def IV(self,equity,period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity,period,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period,0,-1): if r_w[i] == 0: return 0 else: daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfinverse = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfinverse['r_w_return'].std() if std == 0: return 0 else: inv_vol = 1 / std return inv_vol else: return 0 def SMADayRet(self,equity,period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity,period,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period,0,-1): if r_w[i] == 0: return None daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) if r_w.IsReady: smareturn = sum(r_w_return) / period return smareturn else: return 0 def EMA(self,equity,period): extension = period + 50 r_w = RollingWindow[float](extension) history = self.History(equity,extension - 1,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: total_price = 0 for i in range(extension - 1,extension - period - 2,-1): total_price += r_w[i] average_price = total_price/period for i in range(extension - period - 2,-1,-1): average_price = r_w[i]*2/(period+1) + average_price*(1-2/(period+1)) return average_price else: return None def Sort(self,sort_type,equities,period,reverse,number,multiplier): self.PT = getattr(self,f"PT{number}") * multiplier returns = {} for equity in equities: returns[equity] = getattr(self,sort_type)(equity,period) s_e = sorted([item for item in returns.items() if item[1] is not None],key = lambda x: x[1],reverse = reverse) t3e = s_e[:1] ht = getattr(self,f"HT{number}") hts = getattr(self,f"HTS{number}") for i in ht.keys(): if ht[i] == 0: ht[i] = self.PT hts[i].append(t3e[0][0]) break setattr(self,f"HT{number}",ht) setattr(self,f"HTS{number}",hts) def AH(self, equities, PTnumber, multiplier): #AppendHolding if not isinstance(equities, list): equities = [equities] HT = getattr(self, f"HT{PTnumber}") HTS = getattr(self, f"HTS{PTnumber}") PT = getattr(self, f"PT{PTnumber}") * multiplier for equity in equities: for i in HT.keys(): if HT[i] == 0: HT[i] = PT HTS[i].append(equity) break def OnData (self,data): pass def FunctionBeforeMarketClose(self): mkt_price = self.History(self.MKT,2,Resolution.Daily)['close'].unstack(level= 0).iloc[-1] self.mkt.append(mkt_price) mkt_perf = self.cash * self.mkt[-1] / self.mkt[0] self.Plot('Strategy Equity',self.MKT,mkt_perf) self.TQQQFTLT() self.SOXXRSIMachine() self.TQQQorNOT() self.DereckCustomBetaBaller() #self.Slowloss() self.ExecuteTrade() self.PrintStrategy() def Slowloss(self): response = self.Download('https://drive.google.com/uc?export=download&id=13ER4Rvm9vo0b-LvPvSwjgs0PwTROJuMa') tickers_list = [] new_tickers_list = [] if response: reader = csv.DictReader(io.StringIO(response)) for row in reader: if (row['Symphony'] == 'BEST0d' or row['Symphony'] == 'BEST20d' or row['Symphony'] == 'BESTr30' or row['Symphony'] == 'BESTr0') and len(row['Ticker']) <= 5: ticker = row['Ticker'] tickers_list.append(ticker) allocation_percent = float(row['Ticker Allocation Percent']) self.AH(ticker,5,allocation_percent/400) if row['Symphony'] == 'info': self.Debug('******Data refreshed at: ' + row['Ticker']) tickers_list.extend(self.equities) new_tickers_list = [ticker for ticker in tickers_list if ticker not in self.equities] tickers_list = list(set(tickers_list)) for ticker in tickers_list: if not self.Securities.ContainsKey(ticker): self.AddEquity(ticker,Resolution.Minute) self.Securities[ticker].SetDataNormalizationMode(DataNormalizationMode.Adjusted) # Debug the final list of tickers #self.Debug(str(tickers_list)) self.Debug("Newly added tickers: " + str(new_tickers_list)) else: response = self.Download('https://mainsignal-6rkoj3i67a-uk.a.run.app/') time.sleep(40) if response: data = json.loads(response) for key in data['Symphony'].keys(): if (data['Symphony'][key] == 'quikl230303' or data['Symphony'][key] == 'slowloss1'): ticker = data['Ticker'][key] tickers_list.append(ticker) allocation_percent = float(data['Ticker Allocation Percent'][key]) self.AH(ticker,6,allocation_percent/200) if (data['Symphony'][key] == 'BEST0d' or data['Symphony'][key] == 'BEST20d'): ticker = data['Ticker'][key] tickers_list.append(ticker) allocation_percent = float(data['Ticker Allocation Percent'][key]) self.AH(ticker,5,allocation_percent/200) if data['Symphony'][key] == 'info': self.Debug('Data refreshed at: ' + data['Ticker'][key]) def TQQQFTLT(self): if self.Securities['SPY'].Price > self.SMA('SPY',200): if self.RSI('TQQQ',10) > 78: self.AH(['SPXU','UVXY','SQQQ'], 1, 0.33) else: if self.RSI('SPXL',10) > 79: self.AH(['SPXU','UVXY','SQQQ'], 1, 0.33) else: if self.CumReturn('TQQQ',4) > 0.2: if self.RSI('TQQQ',10) < 31: self.AH('TQQQ',1,1) else: if self.RSI('UVXY',10) > self.RSI('SQQQ',10): self.AH(['SPXU','UVXY','SQQQ'], 1, 0.33) else: self.AH('SQQQ',1,1) else: self.AH('TQQQ',1,1) else: if self.RSI('TQQQ',10) < 31: self.AH('TECL',1,1) else: if self.RSI('SMH',10) < 30: self.AH('SOXL',1,1) else: if self.RSI('DIA',10) < 27: self.AH('UDOW',1,1) else: if self.RSI('SPY',14) < 28: self.AH('UPRO',1,1) else: self.Group1() self.Group2() def Group1(self): if self.CumReturn('QQQ',200) < -0.2: if self.Securities['QQQ'].Price < self.SMA('QQQ',20): if self.CumReturn('QQQ',60) < -0.12: self.Group5() self.Group6() else: if self.RSI('TLT',10) > self.RSI('SQQQ',10): self.AH('TQQQ',1,0.5) else: self.AH('SQQQ',1,0.5) else: if self.RSI('SQQQ',10) < 31: self.AH('PSQ',1,0.5) else: if self.CumReturn('QQQ',9) > 0.055: self.AH('PSQ',1,0.5) else: if self.RSI('QQQ',10) > self.RSI('SMH',10): self.AH('QQQ',1,0.5) else: self.AH('SMH',1,0.5) else: if self.Securities['QQQ'].Price < self.SMA('QQQ',20): if self.RSI('TLT',10) > self.RSI('SQQQ',10): self.AH('TQQQ',1,0.5) else: self.AH('SQQQ',1,0.5) else: if self.RSI('SQQQ',10) < 31: self.AH('SQQQ',1,0.5) else: if self.CumReturn('QQQ',9) > 0.055: self.AH('SQQQ',1,0.5) else: if self.RSI('TQQQ',10) > self.RSI('SOXL',10): self.AH('TQQQ',1,0.5) else: self.AH('SOXL',1,0.5) def Group2(self): if self.Securities['QQQ'].Price < self.SMA('QQQ',20): if self.CumReturn('QQQ',60) < -0.12: self.Group3() self.Group4() else: if self.RSI('TLT',10) > self.RSI('SQQQ',10): self.AH('TQQQ',1,0.5) else: self.AH('SQQQ',1,0.5) else: if self.RSI('SQQQ',10) < 31: self.AH('SQQQ',1,0.5) else: if self.CumReturn('QQQ',70) < -0.15: if self.RSI('TQQQ',10) > self.RSI('SOXL',10): self.AH('TQQQ',1,0.5) else: self.AH('SOXL',1,0.5) else: self.Sort("CumReturn",["SPY","QQQ","DIA","XLP"],14,True,1,0.5) def Group3(self): if self.Securities['SPY'].Price > self.SMA('SPY',20): self.AH('SPY',1,0.25) else: if self.RSI('TLT',10) > self.RSI('SQQQ',10): self.AH('QQQ',1,0.25) else: self.AH('PSQ',1,0.25) def Group4(self): if self.RSI('TLT',10) > self.RSI('SQQQ',10): self.AH('QQQ',1,0.25) else: self.AH('PSQ',1,0.25) def Group5(self): if self.Securities['SPY'].Price > self.SMA('SPY',20): self.AH('SPY',1,0.25) else: if self.RSI('TLT',10) > self.RSI('SQQQ',10): self.AH('QQQ',1,0.25) else: self.AH('PSQ',1,0.25) def Group6(self): if self.RSI('TLT',10) > self.RSI('SQQQ',10): self.AH('QQQ',1,0.25) else: self.AH('PSQ',1,0.25) def SOXXRSIMachine(self): if self.RSI('SOXX',10) > 75: self.AH('SOXS',2,self.TA1110) else: if self.RSI('SOXX',2) < 41: if self.RSI('SOXL',10) < 57: self.AH('SOXL',2,self.TA1110) else: self.AH('SOXS',2,self.TA1110) else: self.GainTrainDGAF() def GainTrainDGAF(self): self.SubGainTrain1() self.SubGainTrain2() self.OperationMeatShield() def SubGainTrain1(self): if self.EMA('UUP',42) > self.EMA('UUP',100): self.Sort("RSI",["UUP","USDU"],14,False,2,self.TA1111) else: self.Sort("STD",["BIL","SOXL","DBC"],14,True,2,self.TA1111) def SubGainTrain2(self): if 50 < self.RSI('IEF',10): if self.RSI('SPY',7) > 76: self.OverboughtSP2() else: self.Sort("MaxDD",["SOXL","SMH"],6,True,2,self.TA1120) else: if self.RSI('SPY',7) < 27: self.ExtremelyoversoldSP() else: self.AH(['UGL','SH','PSQ'],2,self.TA1121) def OverboughtSP2(self): self.AH('UGL',2,self.TA1120) def ExtremelyoversoldSP(self): if self.RSI('SHY',10) < self.RSI('VTI',10): self.AH('SOXS',2,self.TA1120) else: self.AH('SOXL',2,self.TA1120) def OperationMeatShield(self): self.SubGainTrain3() self.SubGainTrain4() def SubGainTrain3(self): if self.RSI('COST',14) < 69: if self.MaxDD('SPY',5) > 0.12: self.AH('BIL',2,self.TA1130) else: self.AH('COST',2,self.TA1130) else: self.AH('BIL',2,self.TA1130) def SubGainTrain4(self): if self.RSI('UNH',14) < 79: if self.MaxDD('SPY',5) > 0.12: self.AH('BIL',2,self.TA1140) else: self.AH('UNH',2,self.TA1140) else: self.AH('BIL',2,self.TA1140) def TQQQorNOT(self): if self.RSI('TQQQ',10) > 78: self.AH(['SPXU','UVXY','SQQQ'], 3, self.TA1210/3) else: if self.CumReturn('TQQQ',6) < -0.12: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 3, self.TA1210/3) else: if self.RSI('TQQQ',10) < 32: self.AH('TQQQ',3,self.TA1210) else: if self.MaxDD('TMF',10)<0.07: self.AH('TQQQ',3,self.TA1210) else: self.AH('BIL',3,self.TA1210) else: if self.MaxDD('QQQ',10)>0.06: self.AH('BIL',3,self.TA1210) else: if self.MaxDD('TMF',10)>0.07: self.AH('BIL',3,self.TA1210) else: if self.Securities['QQQ'].Price > self.SMA('QQQ',25): self.AH('TQQQ',3,self.TA1210) else: if self.RSI('SPY',60) > 50: if self.RSI('BND',45) > self.RSI('SPY',45): self.AH('TQQQ',3,self.TA1210) else: self.AH('BIL',3,self.TA1210) else: if self.RSI('IEF',200) < self.RSI('TLT',200): if self.RSI('BND',45) > self.RSI('SPY',45): self.AH('TQQQ',3,self.TA1210) else: self.AH('BIL',3,self.TA1210) else: self.AH('BIL',3,self.TA1210) def DereckCustomBetaBaller(self): if self.SMADayRet('TLT',350) < self.SMADayRet('TLT',550): if self.Securities['SPY'].Price < self.SMA('SPY',200): self.V320BetaBaller() else: self.BullStockMarket() else: self.NewApollo() def V320BetaBaller(self): if self.RSI('BIL',8) < 35: if self.RSI('TQQQ',10) > 80: self.OverboughtSP() else: self.AH('SOXL',4,1) else: if self.RSI('SPY',6) < 27: self.ExtremelyoversoldSP() else: self.BearStockMarket() def OverboughtSP(self): self.Sort("RSI",["VIXM","VIXY"],13,False,4,1) def ExtremelyoversoldSP(self): if self.RSI('BSV',7) < self.RSI('SPHB',7): self.Sort("RSI",["SOXS","SOXS"],7,False,4,1) else: self.Sort("RSI",["SOXL","TECL"],7,False,4,1) def BearStockMarket(self): if self.RSI('BSV',7) > self.RSI('SHY',7): self.BearStockMarketSTRIPPED331() else: self.AH('SOXL',4,1) def BearStockMarketSTRIPPED331(self): if self.RSI('QQQ',10) < 30: self.Sort("SMADayRet",["TQQQ","SPXL","SOXL","UPRO"],5,True,4,1) else: if self.RSI('SPY',10) < 30: self.AH('UPRO',4,1) else: if self.Securities['QLD'].Price > self.SMA('QLD',20): self.BearStockMarketSTRIPPED231() else: self.BearStockMarketSTRIPPED022() def BearStockMarketSTRIPPED231(self): if 50 > self.RSI('IEF',7): self.BearStockMarketSTRIPPED141() else: if self.RSI('SPY',6) > 75: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.AH('SOXL',4,1) def BearStockMarketSTRIPPED141(self): if self.Securities['TLT'].Price < self.SMA('TLT',21): self.BAARiskOffRisingRatesTMV() else: self.BABRiskOffFallingRatesTMF() def BAARiskOffRisingRatesTMV(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TQQQ","SOXL","UPRO"],5,True,4,1) else: if self.CumReturn('SPY',2) < -0.02: self.Sort("CumReturn",["SPXS","TECS","SOXS","SQQQ","ERX"],5,False,4,1) else: if self.CumReturn('SPXU',6) > self.CumReturn('UPRO',3): self.Sort("CumReturn",["SOXS","SQQQ","EPI"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","SOXL","TMV"],5,False,4,1) else: if self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["SOXL","IYK","TMV"],5,False,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TQQQ","IYK","SOXL","UPRO","TECL"],5,True,4,1) else: self.Sort("SMADayRet",["SOXL","IYK","UPRO"],22,False,4,1) else: self.Defence() def Defence(self): if self.STD('DBC',20) > self.STD('SPY',20): if self.STD('DBC',10) > 0.03: if self.STD('TMV',5) < self.STD('DBC',5): self.AH('TMV',4,1) else: self.AH('DBC',4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TMV","SOXS","SPXU"],5,True,4,1) else: self.Sort("CumReturn",["EFA","EEM","SPXS","SOXS","UCO","TMV"],5,False,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["EPI","SOXL","UPRO","IYK"],5,False,4,1) else: self.Sort("CumReturn",["EWZ","TECS","SOXS","EUO","YCS","TMV"],5,False,4,1) def BABRiskOffFallingRatesTMF(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.CumReturn('SPY',2) < -0.02: self.Sort("SMADayRet",["SPXS","TECS","SOXS","SQQQ"],5,True,4,1) else: if self.CumReturn('SPXU',6) > self.CumReturn('UPRO',3): self.Sort("CumReturn",["BIL","AGG","TMF"],5,False,4,1) else: self.Sort("SMADayRet",["TECL","SOXL","TQQQ","EWZ","TMF"],5,False,4,1) else: if self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.EMA('SPY',210) > self.EMA('SPY',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["TECL","TQQQ","SPXL","EPI","SOXL","UPRO","QLD","EWZ","MVV","XLU","IYK","USD","TMF"],7,False,4,1) if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TECL","SPXL","EPI","SOXL","UPRO","MVV"],7,False,4,1) else: self.Sort("CumReturn",["SOXS","TMF"],5,True,4,1) else: self.Sort("RSI",["SPXS","SQQQ","TECS","SOXS"],5,False,4,1) else: self.Defence2() def Defence2(self): if self.STD('DBC',20) > self.STD('SPY',20): self.Sort("RSI",["SPXS","EPI","TECS","SOXS","SQQQ"],5,False,4,1) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","TMF"],5,True,4,1) def BearStockMarketSTRIPPED022(self): if self.RSI('TQQQ',9) < 32: if self.CumReturn('TQQQ',2) > self.CumReturn('TQQQ',5): self.FiveandDime11() else: self.Sort("RSI",["TMF","UCO","USD","SOXL","SQQQ"],5,False,4,1) else: self.BearStockMarketSTRIPPED201() def FiveandDime11(self): self.Substrategy1() self.Substrategy2() def Substrategy1(self): self.Sort("RSI",["TECL","SOXL","SHY"],10,False,1,0.5) def Substrategy2(self): self.Sort("RSI",["SHY","SOXL"],5,False,1,0.5) def BearStockMarketSTRIPPED201(self): if self.Securities['TLT'].Price > self.SMA('TLT',200): self.ABMediumtermTLT() else: self.BlongtermTLT() def ABMediumtermTLT(self): if self.SMADayRet('TLT',20) < 0: self.ABBARiskOffRisingRatesTMV() else: self.ABBBRiskOffFallingRatesTMF() def ABBARiskOffRisingRatesTMV(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","UPRO"],5,False,4,1) else: if self.CumReturn('SPXU',6) > self.CumReturn('UPRO',3): self.Sort("CumReturn",["SOXS","EUO","YCS"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","SOXL","TQQQ","CURE"],5,False,4,1) else: if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["SOXL","TECL","TMV","TQQQ","UPRO"],5,False,4,1) def ABBBRiskOffFallingRatesTMF(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TECL","SOXL","TQQQ"],5,False,4,1) else: if self.CumReturn('SPY',2) < -0.02: self.Sort("CumReturn",["TECS","SOXS","SQQQ"],5,True,4,1) else: if self.CumReturn('SPXU',6) > self.CumReturn('UPRO',3): self.Sort("CumReturn",["ERX","EUO","YCS"],5,True,4,1) else: self.Sort("SMADayRet",["EWZ","SOXL","MVV","USD"],5,False,4,1) else: if self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if 50 < self.RSI('IEF',7): self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("CumReturn",["EWZ","UUP","TMF","UCO"],5,True,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TQQQ","SPXL","QLD","USD","TECL"],5,False,4,1) else: self.Sort("CumReturn",["EWZ","EWZ","TMF"],5,True,4,1) else: self.Defence3() def Defence3(self): if self.STD('DBC',20) > self.STD('SPY',20): self.Sort("RSI",["SHY","EWZ","GLD","SPXS","TECS","SOXS","UCO","YCS"],5,False,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["SOXL","USD","TMF"],5,False,4,1) else: self.Sort("CumReturn",["EWZ","SPXS","SOXS","UCO","YCS"],5,True,4,1) def BlongtermTLT(self): if self.SMADayRet('TLT',20) < 0: self.BAARiskOffRisingRatesTMV2() else: self.BABRiskOffFallingRatesTMF() def BAARiskOffRisingRatesTMV2(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TQQQ","SOXL","UPRO"],5,True,4,1) else: if self.CumReturn('SPY',2) < -0.02: self.Sort("CumReturn",["SPXS","TECS","SOXS","SQQQ","ERX"],5,False,4,1) else: if self.CumReturn('SPXU',6) > self.CumReturn('UPRO',3): self.Sort("CumReturn",["SOXS","SQQQ","EPI"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","SOXL","TMV"],5,False,4,1) else: if self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["SOXL","IYK","TMV"],5,False,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TQQQ","SOXL","IYK","TMV","UPRO","TECL"],5,True,4,1) else: self.Sort("SMADayRet",["SOXL","IYK","UPRO"],22,False,4,1) else: self.Defence() def BullStockMarket(self): if self.RSI('SPY',40) > 75: if 50 < self.RSI('IEF',7): self.AH('QQQ',4,1) else: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.BullStockMarket222() def BullStockMarket222(self): if 50 > self.RSI('IEF',7): self.BullStockMarketSTRIPPED1() else: if self.RSI('SPY',6) > 75: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.AH('SOXL',4,1) def BullStockMarketSTRIPPED1(self): if self.RSI('TQQQ',14) > 75: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.RSI('SPXL',10) > 80: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.BullStockMarketSTRIPPED201() def BullStockMarketSTRIPPED201(self): if self.Securities['TLT'].Price > self.SMA('TLT',200): self.ALongTLTtrendingup() else: self.BLongTLTtrendingdown() def ALongTLTtrendingup(self): if self.RSI('TLT',14) < 50: self.AAMediumTLTnotOverbought() else: self.ABMediumTLTmayOverbought2() def AAMediumTLTnotOverbought(self): if self.Securities['TLT'].Price > self.SMA('TLT',5): self.AAAShortTLTtrendingup() else: self.AABShortTLTtrendingdown() def AAAShortTLTtrendingup(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TQQQ","SOXL","UPRO","TECL","SPXL"],5,True,4,1) else: if self.CumReturn('SPXU',6) > self.CumReturn('UPRO',3): self.Sort("CumReturn",["TECS","SOXS","SQQQ","TMF","SHY"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","SOXL","UPRO","EWZ","TMF","TQQQ"],5,False,4,1) else: if self.CumReturn('TQQQ',6) < -0.1: self.Sort("SMADayRet",["TECL","TQQQ","TMF"],7,False,4,1) else: self.Sort("SMADayRet",["SOXL","TMF"],7,False,4,1) def AABShortTLTtrendingdown(self): if self.RSI('TLT',14) < 20: self.AH('SHY',4,1) else: if self.SMADayRet('TLT',20) < 0: self.AABBARiskOffRisingRatesTMV() else: self.AABBBRiskOffFallingRatesTMF() def AAMediumTLTnotOverbought(self): if self.Securities['TLT'].Price > self.SMA('TLT',5): self.AAAShortTLTtrendingup() else: self.AABShortTLTtrendingdown() def AABBARiskOffRisingRatesTMV(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("CumReturn",["SOXS","ERX","SHY"],5,True,4,1) else: self.Sort("SMADayRet",["TQQQ","SOXL","CURE","EWZ","SHY"],5,False,4,1) else: if self.SMA('SPY',210) > self.SMA('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","UPRO","TMV","SHY"],5,False,4,1) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","UPRO","TMV","SHY"],5,True,4,1) else: self.DefenseModified4() def DefenseModified4(self): if self.STD('DBC',20) > self.STD('SPY',20): self.Sort("RSI",["EEM","TECS","SOXS","TMV"],5,False,4,1) else: self.Sort("RSI",["EEM","TECS","SOXS","TMV"],10,False,4,1) def AABBBRiskOffFallingRatesTMF(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("SMADayRet",["TQQQ","SOXL","UPRO","TECL","TMF"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","TMF"],5,False,4,1) elif self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) elif self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["TECL","TQQQ","SPXL","EPI","SOXL","UPRO","QLD","EWZ","MVV","PUI","IYK","USD","TMF"],7,False,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TECL","TQQQ","SOXL","PUI"],5,False,4,1) else: self.Sort("CumReturn",["SOXS","SQQQ","UCO","DIG"],5,False,4,1) else: self.Sort("SMADayRet",["EPI","UPRO","SOXL","TQQQ"],5,True,4,1) def ABMediumTLTmayOverbought2(self): if self.RSI('TLT',14) > 80: self.ABAMediumtermTLTisoverbought() else: if self.Securities['TLT'].Price < self.SMA('TLT',21): self.ABBARiskOffRisingRatesTMV() else: self.ABBBRiskOffFallingRatesTMF() def ABAMediumtermTLTisoverbought(self): if self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","UPRO"],5,False,4,1) else: self.Sort("RSI",["SQQQ","TECS","SOXS","TMV"],5,True,4,1) else: self.Sort("SMADayRet",["EPI","UPRO","SOXL","TQQQ","TMV"],5,True,4,1) def BLongTLTtrendingdown(self): if self.Securities['TLT'].Price < self.SMA('TLT',21): self.BAARiskOffRisingRatesTMV2() else: self.BABRiskOffFallingRatesTMF2() def BABRiskOffFallingRatesTMF2(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.CumReturn('SPY',2) <= -0.02: self.Sort("CumReturn",["SPXS","TECS","SOXS","SQQQ"],5,True,4,1) elif self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("CumReturn",["BIL","AGG","TMF"],5,False,4,1) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","EWZ","TMF"],5,False,4,1) elif self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.EMA('SPY',210) > self.EMA('SPY',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) elif self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["TECL","TQQQ","SPXL","EPI","SOXL","UPRO","QLD","EWZ","MVV","XLU","IYK","USD","TMF"],7,False,4,1) elif 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TECL","SPXL","EPI","SOXL","UPRO","MVV","UGE"],7,False,4,1) else: self.Sort("CumReturn",["SOXS","TMF"],5,True,4,1) else: self.Sort("RSI",["SPXS","SQQQ","TECS","SOXS"],5,False,4,1) else: self.Defence2() def NewApollo(self): if self.Securities['SPY'].Price > self.SMA('SPY',200): if self.RSI('QQQ',14) > 80: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.RSI('SPY',10) > 80: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.V201ABetterLETFBasketDJKeyholeNoUGEPUI() else: if self.RSI('TQQQ',9) < 32: if self.CumReturn('TQQQ',2) >= self.CumReturn('TQQQ',5): self.FiveandDime11() else: if self.RSI('SPY',10) < 30: self.FiveandBelow12() else: if self.Securities['TQQQ'].Price > self.SMA('TQQQ',20): if self.RSI('SQQQ',10) < 31: self.AH('SQQQ',4,1) else: self.AH('TQQQ',4,1) else: self.Sort("RSI",["TMF","UCO","USD","SOXL","SQQQ"],5,False,4,1) else: self.V201ABetterLETFBasketDJKeyholeNoUGEPUI() def V201ABetterLETFBasketDJKeyholeNoUGEPUI(self): if self.Securities['TLT'].Price > self.SMA('TLT',200): self.AIfLongTermTLTIsTrendingUp2() else: self.BLongTLTtrendingdown2() def AIfLongTermTLTIsTrendingUp2(self): if self.RSI('TLT',14) < 50: self.AAIfMediumTermTLTIsNotOverbought2() else: self.ABMediumTermTLTMayBeOverbought3() def AAIfMediumTermTLTIsNotOverbought2(self): if self.Securities['TLT'].Price > self.SMA('TLT',5): self.AAAShortTermTLTIsTrendingUpBuy3xLeveragedBullTreasuryBonds2() else: self.AABIfShortTermTLTIsTrendingDown2() def AAAShortTermTLTIsTrendingUpBuy3xLeveragedBullTreasuryBonds2(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","UPRO"],5,True,4,1) else: if self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("CumReturn",["TECS","SOXS","SQQQ","TMF","SHY"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","UPRO","EWZ","TMF"],5,False,4,1) else: if self.CumReturn('TQQQ',6) < -0.1: self.Sort("SMADayRet",["TECL","TQQQ","TMF"],7,False,4,1) else: self.Sort("SMADayRet",["SOXL","TMF"],7,False,4,1) def AABIfShortTermTLTIsTrendingDown2(self): if self.RSI('TLT',14) < 20: self.AH('TMF',4,1) else: if self.SMADayRet('TLT',20) < 0: self.AABBARiskOffRisingRatesTMV() else: self.AABBBRiskOffFallingRatesTMF2() def AABBBRiskOffFallingRatesTMF2(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("SMADayRet",["TQQQ","SOXL","UPRO","TECL","TMF"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","TMF"],5,False,4,1) elif self.SMA('SPY',210) > self.SMA('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) elif self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["TECL","TQQQ","EPI","SOXL","UPRO","QLD","EWZ","MVV","XLU","USD","TMF"],7,False,4,1) elif 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TECL","TQQQ","SOXL","XLU"],5,False,4,1) else: self.Sort("CumReturn",["SOXS","SQQQ","UCO","DIG"],5,False,4,1) else: self.Sort("SMADayRet",["EPI","UPRO","SOXL","TQQQ"],5,True,4,1) def ABMediumTermTLTMayBeOverbought3(self): if self.RSI('TLT',14) > 80: self.ABAMediumtermTLTisoverbought() else: self.ABBLeveragedSafety() def ABBLeveragedSafety(self): if self.SMADayRet('TLT',20) < 0: self.ABBARiskOffRisingRatesTMV() else: self.ABBARiskOffFallingRatesTMF2() def ABBARiskOffFallingRatesTMF2(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TECL","TQQQ","SOXL"],5,False,4,1) elif self.CumReturn('SPY',2) <= -0.02: self.Sort("CumReturn",["TECS","SOXS","SQQQ"],5,True,4,1) elif self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("CumReturn",["ERX","EUO","YCS"],5,True,4,1) else: self.Sort("SMADayRet",["SOXL","EWZ","MVV","USD"],5,False,4,1) elif self.SMADayRet('SPY',210) > self.SMADayRet('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) elif self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) elif 50 < self.RSI('IEF',7): self.AH('SOXL',4,1) else: self.Sort("CumReturn",["EWZ","UUP","TMF","UCO"],5,True,4,1) elif 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TECL","TQQQ","UPRO","QLD","USD"],5,False,4,1) else: self.Sort("CumReturn",["EWZ","UUP","TMF"],5,True,4,1) else: self.DefenseModified5() def DefenseModified5(self): if self.STD('DBC',20) > self.STD('SPY',20): self.Sort("RSI",["SHY","EWZ","GLD","SPXU","TECS","SOXS","UCO","YCS"],5,False,4,1) elif 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["SOXL","USD","TMF"],5,False,4,1) else: self.Sort("CumReturn",["EWZ","SPXU","SOXS","UCO","YCS"],5,True,4,1) def BLongTLTtrendingdown2(self): if self.Securities['TLT'].Price < self.SMA('TLT',21): self.BAARiskOffRisingRatesTMV3() else: self.BABRiskOffFallingRatesTMF3() def BAARiskOffRisingRatesTMV3(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.RSI('TQQQ',10) < 30: self.Sort("SMADayRet",["TQQQ","SOXL","UPRO"],5,True,4,1) else: if self.CumReturn('SPY',2) <= -0.02: self.Sort("CumReturn",["SPXU","TECS","SOXS","SQQQ","ERX"],5,False,4,1) else: if self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("CumReturn",["SOXS","SQQQ","EPI"],5,True,4,1) else: self.Sort("SMADayRet",["TECL","SOXL","TMV"],5,False,4,1) else: if self.SMA('SPY',210) > self.SMA('DBC',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["SOXL","IYK","TMV"],5,False,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TQQQ","SOXL","UPRO","TMV","TECL"],5,True,4,1) else: self.Sort("SMADayRet",["SOXL","UPRO","IYK"],22,False,4,1) else: self.DefenseModified6() def DefenseModified6(self): if self.STD('DBC',20) > self.STD('SPY',20): if self.STD('DBC',10) >= 0.03: if self.STD('TMV',5) <= self.STD('DBC',5): self.AH('TMV',4,1) else: self.AH('DBC',4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TMV","SOXS","SPXU"],5,True,4,1) else: self.Sort("CumReturn",["EFA","EEM","SPXU","SOXS","UCO","TMV"],5,False,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["EPI","SOXL","UPRO"],5,False,4,1) else: self.Sort("CumReturn",["EWZ","TECS","SOXS","EUO","YCS","TMV"],5,True,4,1) def BABRiskOffFallingRatesTMF3(self): if self.EMA('SPY',210) <= self.SMA('SPY',360): if self.CumReturn('SPY',2) < -0.02: self.Sort("CumReturn",["SPXU","TECS","SOXS","SQQQ"],5,True,4,1) else: if self.CumReturn('SPXU',6) >= self.CumReturn('UPRO',3): self.Sort("CumReturn",["BIL","AGG","TMF"],5,False,4,1) else: self.Sort("CumReturn",["TECL","TQQQ","SOXL","EWZ","TMF"],5,False,4,1) else: if self.SMA('SPY',210) > self.SMA('DBC',360): if self.EMA('SPY',210) > self.EMA('SPY',360): if self.RSI('TQQQ',11) > 77: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: if self.CumReturn('TQQQ',6) < -0.1: if self.CumReturn('TQQQ',1) > 0.055: self.AH(['SPXU','UVXY','SQQQ'], 4, 0.33) else: self.Sort("SMADayRet",["TECL","TQQQ","EPI","SOXL","UPRO","QLD","EWZ","MVV","XLU","USD","TMF"],7,True,4,1) else: if 50 < self.RSI('IEF',7): self.Sort("SMADayRet",["TECL","EPI","SOXL","UPRO","MVV"],7,False,4,1) else: self.Sort("CumReturn",["SOXS","TMF"],5,True,4,1) else: self.Sort("RSI",["SPXU","SQQQ","TECS","SOXS"],5,False,4,1) else: self.DefenseModified7() def DefenseModified7(self): if self.STD('DBC',20) > self.STD('SPY',20): self.Sort("RSI",["SPXU","EPI","TECS","SOXS","SQQQ"],5,False,4,1) else: self.Sort("SMADayRet",["TECL","TQQQ","SOXL","TMF"],5,True,4,1) def FiveandBelow12(self): self.Sort("SMADayRet",["TECL","TQQQ","SOXL","UPRO","QLD"],5,False,4,1) def ExecuteTrade(self): group1 = { 'HTS': [self.HTS1[i][0] if len(self.HTS1[i]) == 1 else self.HTS1[i] for i in self.HTS1], 'HT': [self.HT1[i] for i in self.HT1] } df1 = pd.DataFrame(group1) group2 = { 'HTS': [self.HTS2[i][0] if len(self.HTS2[i]) == 1 else self.HTS2[i] for i in self.HTS2], 'HT': [self.HT2[i] for i in self.HT2] } df2 = pd.DataFrame(group2) group3 = { 'HTS': [self.HTS3[i][0] if len(self.HTS3[i]) == 1 else self.HTS3[i] for i in self.HTS3], 'HT': [self.HT3[i] for i in self.HT3] } df3 = pd.DataFrame(group3) group4 = { 'HTS': [self.HTS4[i][0] if len(self.HTS4[i]) == 1 else self.HTS4[i] for i in self.HTS4], 'HT': [self.HT4[i] for i in self.HT4] } df4 = pd.DataFrame(group4) group5 = { 'HTS': [self.HTS5[i][0] if len(self.HTS5[i]) == 1 else self.HTS5[i] for i in self.HTS5], 'HT': [self.HT5[i] for i in self.HT5] } df5 = pd.DataFrame(group5) df = pd.concat([df1,df2,df3,df4,df5]) df['HTS'] = df['HTS'].astype(str) result = df.groupby(['HTS']).sum().reset_index() # Dictionary with pairs and their divisors pairs_dict = {'SOXS':{'symbol':'SOXL', 'divisor':1}, 'TQQQ':{'symbol':'SQQQ', 'divisor':1}, 'SPXL':{'symbol':'SPXS', 'divisor':1}, 'WEBL':{'symbol':'WEBS', 'divisor':1}, 'TECL':{'symbol':'TECS', 'divisor':1}, 'UPRO':{'symbol':'SPXU', 'divisor':1}, 'QQQ':{'symbol':'PSQ', 'divisor':1}, 'SPY':{'symbol':'SH', 'divisor':1}, 'SARK':{'symbol':'TARK', 'divisor':2}, 'UVXY':{'symbol':'VIXY', 'divisor':1.5}, 'TMV':{'symbol':'TMF', 'divisor':1}} pairs_dict.update({v['symbol']: {'symbol': k, 'divisor': 1/v['divisor']} for k, v in pairs_dict.items()}) # To ensure both directions are covered for equity in self.equities: if all(not pd.isnull(result.iloc[i,0]) and not equity == result.iloc[i,0] for i in range(len(result))): if self.Portfolio[equity].HoldStock: self.Liquidate(equity) #Lidquidate any symbol that is not in result and exists in portfolio output = "*****" for i in range(len(result)): if result.iloc[i,0]: percentage = round(result.iloc[i,1] * 100,2) output += "{}: {}% - ".format(result.iloc[i,0],percentage) output = output.rstrip(" - ") self.Log(output) # Create a dictionary with symbol and its respective value from result dataframe symbol_dict = dict(zip(result.iloc[:,0], result.iloc[:,1])) # Iterate over pairs for selling for symbol1, data in pairs_dict.items(): symbol2 = data['symbol'] divisor = data['divisor'] if symbol1 in symbol_dict and symbol2 in symbol_dict: offset_value = abs(symbol_dict[symbol1] - symbol_dict[symbol2] / divisor) # Lidquidate the smaller value symbol if exists in portfolio if symbol_dict[symbol1] > symbol_dict[symbol2] / divisor and self.Portfolio[symbol2].HoldStock: self.Liquidate(symbol2) elif self.Portfolio[symbol1].HoldStock: self.Liquidate(symbol1) # Remove these two symbols from symbol_dict as we have already processed them symbol_dict.pop(symbol1) symbol_dict.pop(symbol2) # Iterate over remaining symbols in symbol_dict for selling for symbol, value in symbol_dict.items(): if not value == 0 and not symbol == 'BIL': percentage_equity = self.Portfolio[symbol].HoldingsValue / self.Portfolio.TotalPortfolioValue if value < percentage_equity and abs(value / percentage_equity - 1) > self.buffer_pct: #SetHolding at lower value to sell self.SetHoldings(symbol, value) # Iterate again over pairs for buying symbol_dict = dict(zip(result.iloc[:,0], result.iloc[:,1])) # Recreate the symbol_dict since we had popped elements in the previous loop for symbol1, data in pairs_dict.items(): symbol2 = data['symbol'] divisor = data['divisor'] if symbol1 in symbol_dict and symbol2 in symbol_dict: offset_value = abs(symbol_dict[symbol1] - symbol_dict[symbol2] / divisor) # Buy the symbol with greater value if symbol_dict[symbol1] > symbol_dict[symbol2] / divisor: self.SetHoldings(symbol1, offset_value) else: self.SetHoldings(symbol2, offset_value) # Remove these two symbols from symbol_dict as we have already processed them symbol_dict.pop(symbol1) symbol_dict.pop(symbol2) # Iterate over remaining symbols in symbol_dict for buying for symbol, value in symbol_dict.items(): if not value == 0 and not symbol == 'BIL': percentage_equity = self.Portfolio[symbol].HoldingsValue / self.Portfolio.TotalPortfolioValue if value > percentage_equity and abs(percentage_equity / value - 1) > self.buffer_pct: #SetHolding at higher value to buy self.SetHoldings(symbol, value) def PrintStrategy(self): strategy_dataframes = { 'TQQQFTLT': { 'HTS': [self.HTS1[i][0] if len(self.HTS1[i]) == 1 else self.HTS1[i] for i in self.HTS1], 'HT': [self.HT1[i] for i in self.HT1] }, 'SOXXRSIMachine': { 'HTS': [self.HTS2[i][0] if len(self.HTS2[i]) == 1 else self.HTS2[i] for i in self.HTS2], 'HT': [self.HT2[i] for i in self.HT2] }, 'TQQQorNOT': { 'HTS': [self.HTS3[i][0] if len(self.HTS3[i]) == 1 else self.HTS3[i] for i in self.HTS3], 'HT': [self.HT3[i] for i in self.HT3] }, 'Beta Baller': { 'HTS': [self.HTS4[i][0] if len(self.HTS4[i]) == 1 else self.HTS4[i] for i in self.HTS4], 'HT': [self.HT4[i] for i in self.HT4] }, 'Best 0-20 days': { 'HTS': [self.HTS5[i][0] if len(self.HTS5[i]) == 1 else self.HTS5[i] for i in self.HTS5], 'HT': [self.HT5[i] for i in self.HT5] } } output_strategies = [] for strategy_name,data in strategy_dataframes.items(): df = pd.DataFrame(data) df['HTS'] = df['HTS'].astype(str) result = df.groupby(['HTS']).sum().reset_index() valid_results = result[(result['HTS'] != '[]') & (result['HT'] != 0)] strategy_output = f"{strategy_name}: " + ', '.join([f"{row['HTS']}({row['HT']*100:.2f}%)" for _,row in valid_results.iterrows()]) output_strategies.append(strategy_output) output = '; '.join(output_strategies) self.Log(output) self.HT1 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS1 = {str(i).zfill(2): [] for i in range(1,10)} self.HT2 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS2 = {str(i).zfill(2): [] for i in range(1,10)} self.HT3 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS3 = {str(i).zfill(2): [] for i in range(1,10)} self.HT4 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS4 = {str(i).zfill(2): [] for i in range(1,10)} self.HT5 = {str(i).zfill(2): 0 for i in range(1,40)} self.HTS5 = {str(i).zfill(2): [] for i in range(1,40)} #self.HT6 = {str(i).zfill(2): 0 for i in range(1,10)} #self.HTS6 = {str(i).zfill(2): [] for i in range(1,10)}