Overall Statistics |
Total Trades 1216 Average Win 0.30% Average Loss -0.23% Compounding Annual Return 20.572% Drawdown 20.700% Expectancy 0.405 Net Profit 75.371% Sharpe Ratio 0.901 Loss Rate 40% Win Rate 60% Profit-Loss Ratio 1.34 Alpha 0.172 Beta -0.012 Annual Standard Deviation 0.189 Annual Variance 0.036 Information Ratio 0.066 Tracking Error 0.217 Treynor Ratio -13.992 Total Fees $1238.76 |
from System.Collections.Generic import List from QuantConnect.Data.UniverseSelection import * import operator from math import ceil,floor class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2012,01,01) #Set Start Date self.SetEndDate(2015,01,01) #Set End Date self.SetCash(100000) #Set Strategy Cash self.flag1 = 1 self.flag2 = 0 self.flag3 = 0 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.AddEquity("SPY") self.__numberOfSymbols = 500 self.__numberOfSymbolsFine = 50 self.num_portfolios = 5 self._changes = SecurityChanges.None self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing)) def CoarseSelectionFunction(self, coarse): if self.flag1 == 2: CoarseWithFundamental = [x for x in coarse if x.HasFundamentalData] sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=True) top = sortedByDollarVolume[:self.__numberOfSymbols] list = List[Symbol]() for x in top: list.Add(x.Symbol) return list else: return(List[Symbol]()) def FineSelectionFunction(self, fine): if self.flag1 == 2: self.flag1 = 0 self.flag2 = 1 filtered_fine = [x for x in fine if x.OperationRatios.OperationMargin.Value and x.ValuationRatios.PriceChange1M and x.ValuationRatios.BookValuePerShare] sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=True) sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=True) sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True) num_stocks = floor(len(filtered_fine)/self.num_portfolios) self.Log(str(num_stocks)) stock_dict = {} for i,ele in enumerate(sortedByfactor1): rank1 = i rank2 = sortedByfactor2.index(ele) rank3 = sortedByfactor3.index(ele) score = sum([rank1*0.2,rank2*0.4,rank3*0.4]) stock_dict[ele] = score self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False) sorted_symbol = [self.sorted_stock[i][0] for i in xrange(len(self.sorted_stock))] topFine = sorted_symbol[:self.__numberOfSymbolsFine] self.Log(str([x[1] for x in self.sorted_stock])) list = List[Symbol]() for x in topFine: list.Add(x.Symbol) self.flag3 += 1 return list else: return (List[Symbol]()) def OnData(self, data): if self.flag3 > 0: if self.flag2 == 1: self.flag2 = 0 # if we have no changes, do nothing if self._changes == SecurityChanges.None: return # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) for security in self._changes.AddedSecurities: self.SetHoldings(security.Symbol, 1/float(len(self._changes.AddedSecurities))) self._changes = SecurityChanges.None; # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes def Rebalancing(self): self.flag1 += 1