Overall Statistics |
Total Orders 404 Average Win 1.44% Average Loss -1.45% Compounding Annual Return 31.879% Drawdown 37.000% Expectancy 0.358 Start Equity 1000000 End Equity 4031514.60 Net Profit 303.151% Sharpe Ratio 0.878 Sortino Ratio 0.955 Probabilistic Sharpe Ratio 35.340% Loss Rate 32% Win Rate 68% Profit-Loss Ratio 1.00 Alpha 0.128 Beta 1.099 Annual Standard Deviation 0.263 Annual Variance 0.069 Information Ratio 0.752 Tracking Error 0.182 Treynor Ratio 0.21 Total Fees $5006.58 Estimated Strategy Capacity $170000000.00 Lowest Capacity Asset UBER X4DDRW1HKLT1 Portfolio Turnover 2.65% |
#region imports from AlgorithmImports import * import numpy as np from collections import deque import statsmodels.api as sm # from scipy import stats import statistics as stat import pickle #endregion class Q2PlaygroundAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 3, 1) # Set Start Date self.SetEndDate(2024, 6, 1) # Set End Date self.SetCash(1000000) # Set Strategy Cash self.SetSecurityInitializer(BrokerageModelSecurityInitializer( self.BrokerageModel, FuncSecuritySeeder(self.GetLastKnownPrices) )) ################################################################# self.universe_settings.resolution = Resolution.DAILY self._momp = {} # Dict of Momentum indicator keyed by Symbol self._lookback = 252 # Momentum indicator lookback period self._num_coarse = 100 # Number of symbols selected at Coarse Selection self._num_fine = 50 # Number of symbols selected at Fine Selection self._num_long = 5 # Number of symbols with open positions self._month = -1 self._rebalance = False self.add_universe(self._coarse_selection_function, self._fine_selection_function) def _coarse_selection_function(self, coarse): '''Drop securities which have no fundamental data or have too low prices. Select those with highest by dollar volume''' if self._month == self.time.month: return Universe.UNCHANGED self._rebalance = True self._month = self.time.month selected = sorted([x for x in coarse if x.has_fundamental_data and x.price > 5], key=lambda x: x.dollar_volume, reverse=True) return [x.symbol for x in selected[:self._num_coarse]] def _fine_selection_function(self, fine): '''Select security with highest market cap''' selected = sorted(fine, key=lambda f: f.market_cap, reverse=True) return [x.symbol for x in selected[:self._num_fine]] def on_data(self, data): # Update the indicator for symbol, mom in self._momp.items(): mom.update(self.time, self.securities[symbol].close) if not self._rebalance: return # Selects the securities with highest momentum sorted_mom = sorted([k for k,v in self._momp.items() if v.is_ready], key=lambda x: self._momp[x].current.value, reverse=True) selected = sorted_mom[:self._num_long] # Liquidate securities that are not in the list for symbol, mom in self._momp.items(): if symbol not in selected: self.liquidate(symbol, 'Not selected') # Buy selected securities for symbol in selected: self.set_holdings(symbol, 1/self._num_long) self._rebalance = False def on_securities_changed(self, changes): # Clean up data for removed securities and Liquidate for security in changes.removed_securities: symbol = security.symbol if self._momp.pop(symbol, None) is not None: self.liquidate(symbol, 'Removed from universe') for security in changes.added_securities: if security.symbol not in self._momp: self._momp[security.symbol] = MomentumPercent(self._lookback) # Warm up the indicator with history price if it is not ready added_symbols = [k for k,v in self._momp.items() if not v.is_ready] history = self.history(added_symbols, 1 + self._lookback, Resolution.DAILY) history = history.close.unstack(level=0) for symbol in added_symbols: ticker = symbol.id.to_string() if ticker in history: for time, value in history[ticker].dropna().items(): item = IndicatorDataPoint(symbol, time.date(), value) self._momp[symbol].update(item)