Overall Statistics |
Total Trades 268 Average Win 0.20% Average Loss -0.34% Compounding Annual Return 23.251% Drawdown 13.400% Expectancy 0.296 Net Profit 23.251% Sharpe Ratio 1.185 Probabilistic Sharpe Ratio 53.373% Loss Rate 18% Win Rate 82% Profit-Loss Ratio 0.57 Alpha 0.205 Beta 0.034 Annual Standard Deviation 0.174 Annual Variance 0.03 Information Ratio 0.842 Tracking Error 0.22 Treynor Ratio 6.106 Total Fees $277.55 |
#This is a Template of dynamic stock selection. #You can try your own fundamental factor and ranking method by editing the CoarseSelectionFunction and FineSelectionFunction import operator from math import ceil,floor from itertools import groupby from datetime import datetime, timedelta from QuantConnect.Data.UniverseSelection import * class BasicTemplateAlgorithm(QCAlgorithm): def __init__(self): # set the flag for rebalance self.reb = 1 # Number of stocks to pass CoarseSelection process self.num_coarse = 675 # Number of stocks to long/short self.num_fine = 8 self.symbols = None def Initialize(self): self.SetCash(100000) self.SetStartDate(2015,1,1) # if not specified, the Backtesting EndDate would be today self.SetEndDate(2016,1,1) self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.SetBenchmark('SPY') self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Cash) # Schedule the rebalance function to execute at the begining of each month self.Schedule.On(self.DateRules.WeekStart(self.spy), self.TimeRules.AfterMarketOpen(self.spy,180), Action(self.rebalance)) def CoarseSelectionFunction(self, coarse): # if the rebalance flag is not 1, return null list to save time. if self.reb != 1: return self.long # make universe selection once a month # drop stocks which have no fundamental data or have too low prices selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 10) #and (x.Market == "usa") and (x.DollarVolume > 1e6)] sortedByDollarVolume = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) top = sortedByDollarVolume[:self.num_coarse] return [i.Symbol for i in top] def FineSelectionFunction(self, fine): # return null list if it's not time to rebalance if self.reb != 1: return self.long self.reb = 0 # drop stocks which don't have the information we need. # you can try replacing those factor with your own factors here filtered_fine = [x for x in fine if x.OperationRatios.OperationMargin.ThreeMonths #and x.OperationRatios.OperationMargin.OneYear and x.OperationRatios.RevenueGrowth.OneYear and x.OperationRatios.RevenueGrowth.ThreeMonths and x.OperationRatios.RevenueGrowth.ThreeYears and x.OperationRatios.AssetsTurnover.OneYear and x.OperationRatios.AssetsTurnover.ThreeMonths and x.OperationRatios.EBITDAMargin.ThreeMonths and x.OperationRatios.EBITDAMargin.SixMonths and x.OperationRatios.EBITDAMargin.OneYear and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"] #and (x.CompanyReference.CountryId == "USA") #and x.FinancialStatements.BalanceSheet.TotalEquity.TwelveMonths #and x.EarningRatios.FCFPerShareGrowth.OneYear and x.OperationRatios.CFOGrowth.OneYear and x.ValuationRatios.PBRatio and x.ValuationRatios.PSRatio #and x.ValuationRatios.PCFRatio #and x.ValuationRatios.PERatio and x.OperationRatios.ROE.ThreeMonths and x.OperationRatios.ROIC.ThreeMonths and x.OperationRatios.ROA.ThreeMonths #and x.OperationRatios.FinancialLeverage.OneYear #and x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.ThreeMonths=> 0 #and x.ValuationRatios.TrailingDividendYield < 0.005 #and x.OperationRatios.NetIncomeGrowth.Value!=0 and x.OperationRatios.StockholdersEquityGrowth.OneYear and x.SecurityReference.IsPrimaryShare > 0 and x.CompanyReference.PrimarySymbol!="UARM" and x.CompanyReference.PrimarySymbol!="UA" and (x.CompanyReference.PrimaryShareClassID!="TDRYVSXV1X0") and (x.CompanyReference.PrimaryShareClassID!="TOKWGQFJ9XET") #and x.MarketCap > 5e10 #and x.FinancialStatements.IncomeStatement.TotalRevenue.TwelveMonths #and x.SecurityReference.SecurityType == "ST00000001" and (x.AssetClassification.MorningstarSectorCode!= 309) and (x.AssetClassification.MorningstarSectorCode!=206) and (x.AssetClassification.MorningstarIndustryGroupCode!=31055)] #for i in filtered_fine: #i.rd_ratio = (i.FinancialStatements.IncomeStatement.ResearchAndDevelopment.ThreeMonths / i.FinancialStatements.IncomeStatement.NetIncome.ThreeMonths) #i.MarketCapi = (i.EarningReports.BasicAverageShares.TwelveMonths * # i.EarningReports.BasicEPS.TwelveMonths * # i.ValuationRatios.PERatio) #rd_ratio[i] = (i.FinancialStatements.IncomeStatement.ResearchAndDevelopment.ThreeMonths / # i.FinancialStatements.IncomeStatement.NetIncome.OneYear) #market_cap[i] = (i.EarningReports.BasicAverageShares.ThreeMonths * # i.EarningReports.BasicEPS.TwelveMonths * # i.ValuationRatios.PERatio) self.Debug('remained to select %d'%(len(filtered_fine))) # rank stocks by three factor. sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.OperationRatios.OperationMargin.ThreeMonths, reverse=False) sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.OperationRatios.RevenueGrowth.ThreeMonths, reverse=False) sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.OperationRatios.AssetsTurnover.OneYear, reverse=False) sortedByfactor4 = sorted(filtered_fine, key=lambda x: x.OperationRatios.EBITDAMargin.SixMonths, reverse=False) sortedByfactor6 = sorted(filtered_fine, key=lambda x: x.OperationRatios.RevenueGrowth.ThreeYears, reverse=False) sortedByfactor7 = sorted(filtered_fine, key=lambda x: x.OperationRatios.StockholdersEquityGrowth.OneYear, reverse=False) sortedByfactor8 = sorted(filtered_fine, key=lambda x: x.OperationRatios.CFOGrowth.OneYear, reverse=False) sortedByfactor9 = sorted(filtered_fine, key=lambda x: x.OperationRatios.RevenueGrowth.OneYear, reverse=False) sortedByfactor10 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PBRatio, reverse=False) sortedByfactor11 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PSRatio, reverse=False) sortedByfactor12 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PCFRatio, reverse=False) #sortedByfactor13 = sorted(filtered_fine, key=lambda x: x.OperationRatios.EBITDAMargin.ThreeMonths, reverse=False) sortedByfactor14 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PERatio, reverse=False) sortedByfactor15 = sorted(filtered_fine, key=lambda x: x.OperationRatios.AssetsTurnover.ThreeMonths, reverse=False) sortedByfactor16 = sorted(filtered_fine, key=lambda x: x.OperationRatios.ROE.ThreeMonths, reverse=False) sortedByfactor17 = sorted(filtered_fine, key=lambda x: x.OperationRatios.ROIC.ThreeMonths, reverse=False) sortedByfactor18 = sorted(filtered_fine, key=lambda x: x.OperationRatios.ROA.ThreeMonths, reverse=False) sortedByfactor19 = sorted(filtered_fine, key=lambda x: x.OperationRatios.EBITDAMargin.OneYear, reverse=False) sortedByfactor20 = sorted(filtered_fine, key=lambda x: x.OperationRatios.AssetsTurnover.ThreeMonths, reverse=False) sortedByfactor21 = sorted(filtered_fine, key=lambda x: x.OperationRatios.GrossMargin.OneYear, reverse=False) sortedByfactor22 = sorted(filtered_fine, key=lambda x: x.AssetClassification.SizeScore, reverse=False) sortedByfactor23 = sorted(filtered_fine, key=lambda x: x.AssetClassification.StyleScore, reverse=False) sortedByfactor24 = sorted(filtered_fine, key=lambda x: x.AssetClassification.GrowthScore, reverse=False) #sortedByfactor22 = sorted(filtered_fine, key=lambda x: x.OperationRatios.CapExSalesRatio.OneYear, reverse=False) #sortedByfactor21 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.TrailingDividendYield, reverse=True) #sortedByfactor15 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.TrailingDividendYield, reverse=True) #sortedByfactor10 = sorted(filtered_fine, key=lambda x: x.OperationRatios.OperationMargin.ThreeMonths, reverse=False) sortedByMarketCapi = sorted(filtered_fine, key=lambda x: x.MarketCap) #sortedByrd_ratio = sorted(filtered_fine, key=lambda x: x.rd_ratio) stock_dict = {} # assign a score to each stock, you can also change the rule of scoring here. for i,ele in enumerate(sortedByfactor1): margin = i revenue_growth3m = sortedByfactor2.index(ele) assets_turnover = sortedByfactor3.index(ele) ebitda_margin6m = sortedByfactor4.index(ele) revenue_growth3 = sortedByfactor6.index(ele) equity_growth1 = sortedByfactor7.index(ele) cfgrowth = sortedByfactor8.index(ele) revenue_growth1 = sortedByfactor9.index(ele) pb_ratio = sortedByfactor10.index(ele) ps_ratio = sortedByfactor11.index(ele) pcf_ratio = sortedByfactor12.index(ele) #ebitda_margin3m = sortedByfactor13.index(ele) ebitda_margin1 = sortedByfactor19.index(ele) pe_ratio = sortedByfactor14.index(ele) assets_turnover3m = sortedByfactor20.index(ele) ROE = sortedByfactor16.index(ele) ROIC = sortedByfactor17.index(ele) ROA = sortedByfactor18.index(ele) gross_margin = sortedByfactor21.index(ele) size_score = sortedByfactor22.index(ele) style_score = sortedByfactor23.index(ele) growth_score = sortedByfactor24.index(ele) #capex_turnover = sortedByfactor22.index(ele) #div_yield = sortedByfactor21.index(ele) #leverage = sortedByfactor16.index(ele) #dividend_yield = sortedByfactor15.index(ele) #rd_ratio = sortedByrd_ratio.index(ele) size = sortedByMarketCapi.index(ele) #equity_growth = sortedByfactor10.index(ele) #margin1 = sortedByfactor10.index(ele) score = [(gross_margin)*26, (revenue_growth3m)*15, (assets_turnover)*86, (ebitda_margin1)*29, (revenue_growth3)*97, (equity_growth1)*9, #(cfgrowth)*1, (revenue_growth1)*65, (pe_ratio)*40, (pb_ratio)*20, (ps_ratio)*35, (pcf_ratio)*35, (ebitda_margin6m)*1, #(size)*90] (ROE)*2, (ROIC)*2, (ROA)*2, #(leverage)*1] #(assets_turnover3m)*88, (size_score)*98, (style_score)*3, (growth_score)*3] #(capex_turnover)*1] #(margin)*26] #(div_yield)*300] #(dividend_yield)*2] #(margin1)*14] #(equity_growth)*10] score = sum(score) stock_dict[ele] = score # sort the stocks by their scores self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=True) sorted_symbol = [x[0] for x in self.sorted_stock] # sort the top stocks into the long_list and the bottom ones into the short_list self.long = [x.Symbol for x in sorted_symbol[:self.num_fine]] return self.long def OnData(self, data): pass def rebalance(self): # if this month the stock are not going to be long/short, liquidate it. long_list = self.long for i in self.Portfolio.Values: if (i.Invested) and (i.Symbol not in long_list): self.Liquidate(i.Symbol) and self.RemoveSecurity(i.Symbol) # Alternatively, you can liquidate all the stocks at the end of each month. # Which method to choose depends on your investment philosiphy # if you prefer to realized the gain/loss each month, you can choose this method. #self.Liquidate() # Assign each stock equally. Alternatively you can design your own portfolio construction method for i in self.long: self.SetHoldings(i, 1/self.num_fine) self.reb = 1 # for i in self.short: # self.SetHoldings(i, -0.9/self.num_fine) #for kvp in self.Portfolio: # symbol = kvp.Key # holding = kvp.Value # #quantity = self.Portfolio.HoldingsCost # self.Debug(str(self.Time) + str(holding.Symbol)) #self.Debug(str(self.Time) + str(holding.Symbol)) # self.Debug(len(str(holding.Symbol))) #for kvp in self.Securities: # symbol = kvp.Key # security = kvp.Value # quantity = self.Portfolio.Count # #self.Debug(str(security.Symbol)) # self.Debug(str(self.Time) + str(security.Symbol) + str(quantity)) # #self.Debug(str(kvp.Key)) #for kvp in self.Portfolio: # security_holding = kvp.Value # symbol = security_holding.Symbol.Value # Quantity of the security held # quantity = security_holding.Quantity # Average price of the security holdings # price = security_holding.AveragePrice # self.Debug(str(self.Time) + str(symbol) + " " + str(quantity)) invested = [x.Key for x in self.Portfolio if x.Value.Invested] for symbol in invested: security_holding = self.Portfolio[symbol] #count = symbol.Value.Count quantity = security_holding.Quantity price = security_holding.AveragePrice self.Debug(str(symbol) + " " + str(quantity))