Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -32.78 Tracking Error 0.051 Treynor Ratio 0 Total Fees $0.00 |
from datetime import timedelta from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class B_Universe(FundamentalUniverseSelectionModel): def __init__(self): super().__init__(True, None, None) # ovverride def SelectCoarse(self, algorithm, coarse): tickers = ["IBM"] symbols = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers] return symbols
from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class ResistanceMultidimensionalGearbox(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 8, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash tickers = ["AAPL", "AIG", "IBM"] symbols = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers] self.AddUniverseSelection(QC500UniverseSelectionModel()) self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddUniverseSelection(A_Universe()) self.AddUniverseSelection(B_Universe()) self.AddAlpha(MyAlphaModel()) class MyAlphaModel: def __init__(self): self.flag = True def Update(self, algorithm, slice): if self.flag: for kvp in algorithm.UniverseManager: universe = kvp.Value algorithm.Debug("universe symbol: {}".format(kvp.Key)) for kvp2 in universe.Members: symbol = kvp2.Key security = kvp2.Value algorithm.Debug("security symbol: {}".format(symbol)) break self.flag = False insights = [] return insights def OnSecuritiesChanged(self, algorithm, changes): pass class A_Universe(FundamentalUniverseSelectionModel): def __init__(self): super().__init__(False, None, None) # ovverride def SelectCoarse(self, algorithm, coarse): tickers = ["AAPL"] symbols = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers] return symbols def SelectFine(self, algorithm, fine): return [f.Symbol for f in fine] class B_Universe(FundamentalUniverseSelectionModel): def __init__(self): super().__init__(False, None, None) # ovverride def SelectCoarse(self, algorithm, coarse): tickers = ["IBM"] symbols = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers] return symbols def SelectFine(self, algorithm, fine): return [f.Symbol for f in fine]
from datetime import timedelta from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class A_Universe(FundamentalUniverseSelectionModel): def __init__(self): super().__init__(True, None, None) # ovverride def SelectCoarse(self, algorithm, coarse): tickers = ["AAPL"] symbols = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers] return symbols