Overall Statistics
Total Trades
2
Average Win
0.57%
Average Loss
0%
Compounding Annual Return
1.678%
Drawdown
0%
Expectancy
0
Net Profit
0.571%
Sharpe Ratio
1.716
Probabilistic Sharpe Ratio
79.527%
Loss Rate
0%
Win Rate
100%
Profit-Loss Ratio
0
Alpha
0.018
Beta
-0.003
Annual Standard Deviation
0.01
Annual Variance
0
Information Ratio
-2.807
Tracking Error
0.121
Treynor Ratio
-5.356
Total Fees
$2.00
Estimated Strategy Capacity
$680000.00
Lowest Capacity Asset
HSGX VW390IT7P4YT
from datetime import datetime, date, time
from datetime import timedelta
import pandas as pd

class SymbolData:
    def __init__(self,algo,symbol):
        self.algo = algo
        self.symbol = symbol
        self.openPrice = -1   
        self.lowestPrice = -1
        self.ticket = None
        
        self.daily = RollingWindow[TradeBar](2)
        self.window = RollingWindow[TradeBar](2)
        
        self.rsi1 = RelativeStrengthIndex( 14, MovingAverageType.Wilders)
        cons1 = TradeBarConsolidator(timedelta(minutes=15))
        self.algo.SubscriptionManager.AddConsolidator(symbol,cons1)
        self.algo.RegisterIndicator(symbol,self.rsi1,cons1)
        
        self.rsi2 = RelativeStrengthIndex(14, MovingAverageType.Wilders)
        cons2 = TradeBarConsolidator(timedelta(minutes=2))
        self.algo.SubscriptionManager.AddConsolidator(symbol,cons2)
        self.algo.RegisterIndicator(symbol,self.rsi2,cons2)
       
        # Add consolidator for obtaining previous days close
        cons3 = TradeBarConsolidator(timedelta(1))
        cons3.DataConsolidated += self.OnDailyData
        self.algo.SubscriptionManager.AddConsolidator(symbol,cons3) 
        
        # Add daily bar to daily rolling window
    def OnDailyData(self, sender, bar):
        self.daily.Add(bar) 
        
    def IsReady(self):
        return self.rsi1.IsReady and self.rsi2.IsReady
        
class TradeStrategyTest(QCAlgorithm):
    
   def Initialize(self):
        self.SetStartDate(2021,3, 1)  #Set Start Date
        self.SetEndDate(2021,7,1)    #Set End Date
        self.SetCash(30000)           #Set Strategy Cash
        self.SetWarmUp(210)
        self.expiry = self.Time
        
        # Set TimeZone
        self.SetTimeZone("America/New_York")
        
        # Add Equities
        tickers = ['OCGN']

        # Add Equities from .csv file - UNDER TESTING NOT COMPLETE!!!!
        # Create a dataframe from csv
        #self.Equities = pd.read_csv('test.csv', delimiter=',')
        
       
        self.dataBySymbol = {}
        self.Equities = []
        # Set resoltuion for Equity data
        for Symbol in tickers:
            
            symbol = self.AddEquity(Symbol, Resolution.Minute).Symbol
            self.dataBySymbol[symbol] = SymbolData(self,symbol)      
            self.Equities.append(symbol)
            
        # Set Fee Model
        for Symbol in self.Equities:
            
            self.Securities[Symbol].FeeModel = ConstantFeeModel(1.00)

   def OnData(self, data):
        if self.IsWarmingUp:return
        
        # Loop through our equities
        for Symbol in self.Equities:
          symboldata = self.dataBySymbol[Symbol]
          if data.ContainsKey(Symbol) and data[Symbol] is not None and symboldata.IsReady() :
            # Set local variables
            close = data.Bars[Symbol].Close
            quantity = self.CalculateOrderQuantity(Symbol,1*0.2)
            AskPrice = self.Securities[Symbol].AskPrice
            BidPrice = self.Securities[Symbol].BidPrice
            Spread = (AskPrice - BidPrice)
            RSI1 = symboldata.rsi1.Current.Value
            RSI2 = symboldata.rsi2.Current.Value
        
            # Setup Open and Close Prices and Bars
            symboldata.window.Add(data[Symbol])
            if not (symboldata.window.IsReady and symboldata.daily.IsReady): return
            previous_bar_close = symboldata.window[0].Close
            previous_day_close = symboldata.daily[1].Close
            

            change_from_close = (((previous_bar_close - previous_day_close) / previous_bar_close) * 100) 
      
            #Obtain Low of Day and Update 
            bar = data[Symbol]
            
            if not bar.IsFillForward and symboldata.lowestPrice  < 0:
                symboldata.openPrice = bar.Open
                symboldata.lowestPrice = bar.Low
            
            if symboldata.lowestPrice < 0:
                return
            
            price = bar.Low
            if price < symboldata.lowestPrice:  # If we observe a new low
               symboldata.lowestPrice = price
         
            # IMPORTANT!!! Time variables to set open/close times and compare them to current time.
            
            # Convert times to variables (necessary for time comparison)
            currentTime = self.Time
            openTime = time(9,30)
            closeTime = time(12,0)
            
            # Convert string to format that can be compared (comparison does not work if you do not do this)
            # These comparisons are to test it works, before implementing them in the # Buy Conditions function below
            # It is OK to comment them out here, as they are just for testing. Real function below.
            #currentTime.strftime('%H%M') >= openTime.strftime('%H%M')
            #currentTime.strftime('%H%M') <= closeTime.strftime('%H%M')
            
            # Buy Conditions 
            if not self.Portfolio[Symbol].Invested and symboldata.ticket is None and (currentTime.strftime('%H%M') >= openTime.strftime('%H%M') and currentTime.strftime('%H%M') <= closeTime.strftime('%H%M')):
               # 
                # If buy conditions are satisfied then place MarketOrder
                if  ((RSI1 <=70 and RSI1 >=20) and (RSI2 >0 and RSI2 <=25) and (Spread >=0 and Spread <=0.01) and (change_from_close >=-11 and change_from_close <=-4) and (previous_bar_close <= symboldata.lowestPrice)): 
                    symboldata.ticket= self.MarketOrder(Symbol, quantity, tag ="Market Buy") and self.Debug(f"RSI1 Value: {RSI1}, RSI2 Value: {RSI2}, Change from close: {change_from_close}, Spread: {Spread}, Prev Bar Close: {previous_bar_close}, Lowest Price: {symboldata.lowestPrice}, Previous day close: {previous_day_close}, Time: {self.Time}") 
    
                    # Place Profit take and Stop Loss orders then reset to None
                    self.LimitOrder(Symbol, -quantity, close * 1.03, tag = "Profit Take")
                    self.StopMarketOrder(Symbol, -quantity, close * 0.99, tag = "Stopped Out")
                    symboldata.ticket = None
            else:
                # Close position if open for more than 15 minutes and set ticket to None
                if symboldata.ticket is not None and (self.Time > self.ticket.Time + timedelta(minutes = 15)):
                    self.Liquidate(Symbol)
                    symboldata.ticket = None
                    
   # Cancel remaining order if limit order or stop loss order is executed 
   def OnOrderEvent(self, orderEvent):
        order = self.Transactions.GetOrderById(orderEvent.OrderId)
        
        if order.Status == OrderStatus.Filled:
            if order.Type == OrderType.Limit or order.Type == OrderType.StopMarket:
                self.Transactions.CancelOpenOrders(order.Symbol)
                
        if order.Status == OrderStatus.Canceled:
            self.Log(str(orderEvent))
            
   #Reset Daily :Pointer
   def OnEndOfDay(self, symbol):
       for Symbol in self.Equities:
         self.dataBySymbol[Symbol].lowestPrice = -1