Overall Statistics |
Total Trades 2228 Average Win 1.45% Average Loss -1.51% Compounding Annual Return -1.320% Drawdown 57.100% Expectancy 0.018 Net Profit -12.440% Sharpe Ratio 0.045 Sortino Ratio 0.045 Probabilistic Sharpe Ratio 0.035% Loss Rate 48% Win Rate 52% Profit-Loss Ratio 0.96 Alpha -0.064 Beta 1.016 Annual Standard Deviation 0.276 Annual Variance 0.076 Information Ratio -0.269 Tracking Error 0.233 Treynor Ratio 0.012 Total Fees $2352.67 Estimated Strategy Capacity $0 Lowest Capacity Asset BRKB R735QTJ8XC9X Portfolio Turnover 24.80% |
from AlgorithmImports import * class MomentumAndSMAStrategy(QCAlgorithm): def Initialize(self): self.SetStartDate(2014, 1, 1) # Start Date self.SetEndDate(2024, 1, 1) # End Date self.SetCash(10000) # Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.numberOfSymbols = 10 self.ranked_symbols = [] # Add SPY for scheduling purpose, ensuring it's available in the algorithm self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.Schedule.On(self.DateRules.EveryDay(self.spy), self.TimeRules.BeforeMarketClose(self.spy, 10), self.RankAndRebalance) def CoarseSelectionFunction(self, coarse): filtered = sorted(coarse, key=lambda c: c.DollarVolume, reverse=True)[:100] return [c.Symbol for c in filtered if c.HasFundamentalData] def FineSelectionFunction(self, fine): return [f.Symbol for f in fine if f.MarketCap > 2e9][:self.numberOfSymbols] def RankAndRebalance(self): if self.Time.weekday() != 0: # Only run on Mondays return self.liquidStocks = self.ranked_symbols scores = {} for symbol in self.liquidStocks: history = self.History(symbol, 210, Resolution.Daily) if history.empty or len(history) < 90: self.Log(f"Not enough data for {symbol.Value}") continue close = history['close'] momentum = (close.iloc[-1] / close.iloc[-90]) - 1 rsi = self.RSI(symbol, 14, Resolution.Daily).Current.Value sma50 = self.SMA(symbol, 50, Resolution.Daily).Current.Value sma200 = self.SMA(symbol, 200, Resolution.Daily).Current.Value score = momentum + rsi/100 + (sma50 + sma200)/2 scores[symbol] = score self.ranked_symbols = sorted(scores, key=scores.get, reverse=True)[:self.numberOfSymbols] if not self.ranked_symbols: self.Log("No symbols to rank/rebalance.") return for holding in self.Portfolio.Values: if holding.Invested and holding.Symbol not in self.ranked_symbols: self.Liquidate(holding.Symbol) for symbol in self.ranked_symbols: self.SetHoldings(symbol, 1 / len(self.ranked_symbols)) def OnSecuritiesChanged(self, changes): self.ranked_symbols = [c.Symbol for c in changes.AddedSecurities]