Overall Statistics |
Total Trades 173 Average Win 0.02% Average Loss -0.01% Compounding Annual Return 0.335% Drawdown 0.200% Expectancy 0.540 Net Profit 0.337% Sharpe Ratio 0.621 Probabilistic Sharpe Ratio 30.265% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 2.04 Alpha 0.002 Beta 0.003 Annual Standard Deviation 0.005 Annual Variance 0 Information Ratio -1.023 Tracking Error 0.349 Treynor Ratio 0.972 Total Fees $89.00 |
# from datetime import timedelta # import numpy as np # from QuantConnect.Securities.Option import OptionPriceModels class CondorAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 6, 30) self.SetEndDate(2020, 6, 30) self.SetCash(1000000) equity = self.AddEquity("GOOG", Resolution.Minute) equity.SetDataNormalizationMode(DataNormalizationMode.Raw) self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x))) self.underlyingsymbol = equity.Symbol self.SetBenchmark(equity.Symbol) def OnData(self,slice): # slice.Contains(symbol) if self.Portfolio[self.underlyingsymbol].Quantity != 0: self.Liquidate() if not self.Portfolio.Invested: contracts = self.OptionChainProvider.GetOptionContractList(self.underlyingsymbol, self.Time.date()) if contracts: self.TradeOptions(contracts, slice) def TradeOptions(self,contracts, slice): filtered_contracts = self.InitialFilter(self.underlyingsymbol, contracts, -50, 50, 0, 7) # sorted the optionchain by expiration date and choose the furthest date expiry = sorted(filtered_contracts,key = lambda x: x.ID.Date)[-1].ID.Date # filter the call and put options from the contracts call = [i for i in filtered_contracts if i.ID.OptionRight == 0 and i.ID.Date == expiry] # put = [i for i in filtered_contracts if i.ID.OptionRight == 1 and i.ID.Date == expiry] # sorted the contracts according to their strike prices call_contracts = sorted(call,key = lambda x: x.ID.StrikePrice) # put_contracts = sorted(put,key = lambda x: x.ID.StrikePrice) # my long condor components itm_call_lower = call_contracts[-15] itm_call_upper = call_contracts[-10] otm_call_lower = call_contracts[-5] otm_call_upper = call_contracts[-1] if itm_call_lower == 0: return if itm_call_upper == 0: return if otm_call_lower == 0: return if otm_call_upper == 0: return self.trade_contracts = [itm_call_lower,itm_call_upper,otm_call_lower,otm_call_upper] for contract in self.trade_contracts: self.AddOptionContract(contract, Resolution.Minute) #for contract in self.trade_contracts: # if not slice.ContainsKey(contract): # return self.Buy(itm_call_lower, 1) # Buy 1 ITM Call self.Sell(itm_call_upper, 1) # Sell 1 ITM Call self.Sell(otm_call_lower, 1) # Sell 1 OTM Call self.Buy(otm_call_upper, 1) # Buy 1 OTM Call def InitialFilter(self, underlyingsymbol, symbol_list, min_strike_rank, max_strike_rank, min_expiry, max_expiry): # fitler the contracts based on the expiry range contract_list = [i for i in symbol_list if min_expiry <= (i.ID.Date.date() - self.Time.date()).days <= max_expiry] # find the strike price of ATM option atm_strike = sorted(contract_list, key = lambda x: abs(x.ID.StrikePrice - self.Securities[underlyingsymbol].Price))[0].ID.StrikePrice strike_list = sorted(set([i.ID.StrikePrice for i in contract_list])) # find the index of ATM strike in the sorted strike list atm_strike_rank = strike_list.index(atm_strike) try: min_strike = strike_list[atm_strike_rank + min_strike_rank + 1] max_strike = strike_list[atm_strike_rank + max_strike_rank - 1] except: min_strike = strike_list[0] max_strike = strike_list[-1] filtered_contracts = [i for i in contract_list if i.ID.StrikePrice >= min_strike and i.ID.StrikePrice <= max_strike] return filtered_contracts