Overall Statistics |
Total Orders 295 Average Win 0.01% Average Loss -0.03% Compounding Annual Return -0.892% Drawdown 2.000% Expectancy -0.391 Start Equity 100000000 End Equity 98514543.84 Net Profit -1.485% Sharpe Ratio -5.993 Sortino Ratio -5.036 Probabilistic Sharpe Ratio 0.023% Loss Rate 57% Win Rate 43% Profit-Loss Ratio 0.42 Alpha -0.033 Beta 0.003 Annual Standard Deviation 0.005 Annual Variance 0 Information Ratio -0.503 Tracking Error 0.131 Treynor Ratio -10.237 Total Fees $6340.49 Estimated Strategy Capacity $690000.00 Lowest Capacity Asset PL X92QNYYIQDVL Portfolio Turnover 0.24% |
#region imports from AlgorithmImports import * #endregion class ImprovedCommodityMomentumTrading(QCAlgorithm): ''' Demystifying Time-Series Momentum Strategies: Volatility Estimators, Trading Rules and Pairwise Correlations This paper proposed 3 modifications to the basic time-series momentum strategies in order to reduce portfolio turnover and improve portfolio performance. 1. Volatility Estimator: Yang and Zhang (2000) range-based estimator, which replaces the traditional estimator (standard deviation of past daily returns) 2. Trading Rules: Trading positions takes a continuum of values between -1 and +1 to reflect the statistical strength of price trend, which replaces the traditional trading rules (binary +1 or -1 based on the sign of historical mean return) 3. Pairwise Correlations: Incorporate signed pairwise correlations in the weighing scheme of portfolio construction Reference: [1] Baltas, Nick and Kosowski, Robert, "Demystifying Time-Series Momentum Strategies: Volatility Estimators, Trading Rules and Pairwise Correlations", May 8, 2017. URL: https://pdfs.semanticscholar.org/a2e9/df201d4b4774fda84a961cc804f2450988c5.pdf [2] Yang, Dennis, and Qiang Zhang, "Drift‐Independent Volatility Estimation Based on High, Low, Open, and Close Prices", The Journal of Business, vol. 73, no. 3, 2000, pp. 477–492. URL: www.jstor.org/stable/10.1086/209650.''' def initialize(self): self.set_start_date(2018, 1, 1) self.set_end_date(2019, 9, 1) self.set_cash(100000000) self.one_year = 365 # time period for trading rule calculation self.one_month = 30 # time period for YZ volatility estimator self.three_months = 90 # time period for pairwise correlation calculation # Set portfolio target level of volatility, set to 12% self.portfolio_target_sigma = 0.12 # Last trading date tracker to achieve rebalancing the portfolio every month self.rebalancing_time = datetime.min tickers = [Futures.Grains.SOYBEANS, Futures.Grains.WHEAT, Futures.Grains.SOYBEAN_MEAL, Futures.Grains.SOYBEAN_OIL, Futures.Grains.CORN, Futures.Grains.OATS, Futures.Meats.LIVE_CATTLE, Futures.Meats.FEEDER_CATTLE, Futures.Meats.LEAN_HOGS, Futures.Metals.GOLD, Futures.Metals.SILVER, Futures.Metals.PLATINUM, Futures.Energies.BRENT_CRUDE, Futures.Energies.HEATING_OIL, Futures.Energies.NATURAL_GAS, Futures.Energies.LOW_SULFUR_GASOIL, Futures.Softs.COTTON_2, Futures.Softs.ORANGE_JUICE, Futures.Softs.COFFEE, Futures.Softs.COCOA] self.symbol_data = {} for ticker in tickers: future = self.add_future(ticker, resolution = Resolution.DAILY, extended_market_hours = True, data_normalization_mode = DataNormalizationMode.BACKWARDS_RATIO, data_mapping_mode = DataMappingMode.OPEN_INTEREST, contract_depth_offset = 0 ) future.set_leverage(3) self.symbol_data[future.symbol.id.to_string()] = SymbolData(future) def on_data(self, data): ''' Monthly rebalance at the beginning of each month. Portfolio weights for each constituents are calculated based on Baltas and Kosowski weights. ''' # Rollover for future contract mapping change for symbol_data in self.symbol_data.values(): if data.symbol_changed_events.contains_key(symbol_data.symbol): changed_event = data.symbol_changed_events[symbol_data.symbol] old_symbol = changed_event.old_symbol new_symbol = changed_event.new_symbol tag = f"Rollover - Symbol changed at {self.time}: {old_symbol} -> {new_symbol}" if self.securities.contains_key(old_symbol): quantity = self.portfolio[old_symbol].quantity # Rolling over: to liquidate any position of the old mapped contract and switch to the newly mapped contract self.liquidate(old_symbol, tag = tag) if self.securities.contains_key(new_symbol): self.market_order(new_symbol, quantity // self.securities[new_symbol].symbol_properties.contract_multiplier, tag = tag) # skip if less than 30 days passed since the last trading date if self.time < self.rebalancing_time: return '''Monthly Rebalance Execution''' # dataframe that contains the historical data for all securities history = self.history([x.symbol for x in self.symbol_data.values()], self.one_year, Resolution.DAILY) history = history.droplevel([0]).replace(0, np.nan) # Get the security symbols are are in the history dataframe available_symbols = list(set(history.index.get_level_values(level = 0))) if len(available_symbols) == 0: return # Get the trade signals and YZ volatility for all securities trade_signals = self.get_trading_signal(history) volatility = self.get_y_z_volatility(history, available_symbols) # Get the correlation factor c_f_rho_bar = self.get_correlation_factor(history, trade_signals, available_symbols) # Rebalance the portfolio according to Baltas and Kosowski suggested weights n_assets = len(available_symbols) for symbol, signal, vol in zip(available_symbols, trade_signals, volatility): # Baltas and Kosowski weights (Equation 19 in [1]) weight = (signal*self.portfolio_target_sigma*c_f_rho_bar)/(n_assets*vol) if str(weight) == 'nan': continue mapped = self.symbol_data[symbol].mapped qty = self.calculate_order_quantity(mapped, np.clip(weight, -1, 1)) multiplier = self.securities[mapped].symbol_properties.contract_multiplier order_qty = (qty - self.portfolio[mapped].quantity) // multiplier self.market_order(mapped, order_qty) # Set next rebalance time self.rebalancing_time = Expiry.end_of_month(self.time) def get_correlation_factor(self, history, trade_signals, available_symbols): '''Calculate the Correlation Factor, which is a function of the average pairwise correlation of all portfolio contituents - the calculation is based on past three month pairwise correlation - Notations: rho_bar - average pairwise correlation of all portfolio constituents c_f_rho_bar - the correlation factor as a function of rho_bar ''' # Get the past three month simple daily returns for all securities settle = history.unstack(level = 0)['close'] settle = settle.groupby([x.date() for x in settle.index]).last() past_three_month_returns = settle.pct_change().loc[settle.index[-1]-timedelta(self.three_months):] # Get number of assets n_assets = len(available_symbols) # Get the pairwise signed correlation matrix for all assets correlation_matrix = past_three_month_returns.corr() # Calculate rho_bar summation = 0 for i in range(n_assets-1): for temp in range(n_assets - 1 - i): j = i + temp + 1 x_i = trade_signals[i] x_j = trade_signals[j] rho_i_j = correlation_matrix.iloc[i,j] summation += x_i * x_j * rho_i_j # Equation 14 in [1] rho_bar = (2 * summation) / (n_assets * (n_assets - 1)) # Calculate the correlation factor (c_f_rho_bar) # Equation 18 in [1] return np.sqrt(n_assets / (1 + (n_assets - 1) * rho_bar)) def get_trading_signal(self, history): '''TREND Trading Signal - Uses the t-statistics of historical daily log-returns to reflect the strength of price movement trend - TREND Signal Conditions: t-stat > 1 => TREND Signal = 1 t-stat < 1 => TREND Signal = -1 -1 < t-stat < 1 => TREND Signal = t-stat ''' settle = history.unstack(level = 0)['close'] settle = settle.groupby([x.date() for x in settle.index]).last() # daily futures log-returns based on close-to-close log_returns = np.log(settle/settle.shift(1)).dropna() # Calculate the t-statistics as # (mean-0)/(stdev/sqrt(n)), where n is sample size mean = np.mean(log_returns) std = np.std(log_returns) n = len(log_returns) t_stat = mean/(std/np.sqrt(n)) # cap holding at 1 and -1 return np.clip(t_stat, a_max=1, a_min=-1) def get_y_z_volatility(self, history, available_symbols): '''Yang and Zhang 'Drift-Independent Volatility Estimation' Formula: sigma__y_z^2 = sigma__o_j^2 + self.k * sigma__s_d^2 + (1-self.k)*sigma__r_s^2 (Equation 20 in [1]) where, sigma__o_j - (Overnight Jump Volitility estimator) sigma__s_d - (Standard Volitility estimator) sigma__r_s - (Rogers and Satchell Range Volatility estimator) ''' y_z_volatility = [] time_index = history.loc[available_symbols[0]].index #Calculate YZ volatility for each security and append to list for ticker in available_symbols: past_month_ohlc = history.loc[ticker].loc[time_index[-1]-timedelta(self.one_month):time_index[-1]].dropna() open, high, low, close = past_month_ohlc.open, past_month_ohlc.high, past_month_ohlc.low, past_month_ohlc.close estimation_period = past_month_ohlc.shape[0] if estimation_period <= 1: y_z_volatility.append(np.nan) continue # Calculate constant parameter k for Yang and Zhang volatility estimator # using the formula found in Yang and Zhang (2000) k = 0.34 / (1.34 + (estimation_period + 1) / (estimation_period - 1)) # sigma__o_j (overnight jump => stdev of close-to-open log returns) open_to_close_log_returns = np.log(open/close.shift(1)) open_to_close_log_returns = open_to_close_log_returns[np.isfinite(open_to_close_log_returns)] sigma__o_j = np.std(open_to_close_log_returns) # sigma__s_d (standard deviation of close-to-close log returns) close_to_close_log_returns = np.log(close/close.shift(1)) close_to_close_log_returns = close_to_close_log_returns[np.isfinite(close_to_close_log_returns)] sigma__s_d = np.std(close_to_close_log_returns) # sigma__r_s (Rogers and Satchell (1991)) h = np.log(high/open) l = np.log(low/open) c = np.log(close/open) sigma__r_s_daily = (h * (h - c) + l * (l - c))**0.5 sigma__r_s_daily = sigma__r_s_daily[np.isfinite(sigma__r_s_daily)] sigma__r_s = np.mean(sigma__r_s_daily) # daily Yang and Zhang volatility sigma__y_z = np.sqrt(sigma__o_j**2 + k * sigma__s_d**2 + (1 - k) * sigma__r_s**2) # append annualized volatility to the list y_z_volatility.append(sigma__y_z*np.sqrt(252)) return y_z_volatility class SymbolData: def __init__(self, future): self._future = future self.id = future.symbol.id.to_string() self.symbol = future.symbol self.weight = 0 @property def mapped(self): return self._future.mapped