Overall Statistics |
Total Trades 540 Average Win 0.00% Average Loss -1.24% Compounding Annual Return 0% Drawdown 200.000% Expectancy -0.764 Net Profit -200.045% Sharpe Ratio -0.181 Probabilistic Sharpe Ratio 0.322% Loss Rate 76% Win Rate 24% Profit-Loss Ratio 0.00 Alpha -3.531 Beta 2.058 Annual Standard Deviation 5.529 Annual Variance 30.573 Information Ratio -0.404 Tracking Error 5.522 Treynor Ratio -0.486 Total Fees $0.00 |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data import * from datetime import timedelta import pandas as pd from io import StringIO import datetime class main(QCAlgorithm): def Initialize(self): self.SetStartDate(2019,1,1) # Set Start Date #self.SetEndDate(2020,12,31)# Set End Date self.SetCash(100000) # Set Strategy Cash # If using dropbox remember to add the &dl=1 to trigger a download csv = self.Download("https://www.dropbox.com/s/9zspyj9sdc7pyct/test_2.csv?dl=1") # csv = self.Download("https://www.dropbox.com/s/2hlxb85lo7y10i3/test.csv?dl=1") # read file (which needs to be a csv) to a pandas DataFrame. include following imports above self.df = pd.read_csv(StringIO(csv)) self.SetExecution(ImmediateExecutionModel()) self.AveragePrice = None for i in range(len(self.df)) : self.security=str(self.df.iloc[i,0]).replace(" ", "") #self.quantity=self.df.iloc[i,1] self.AddEquity(self.security,Resolution.Minute).SetDataNormalizationMode(DataNormalizationMode.Raw) ############## SLIPPAGE & FEE MODEL#################################################################### self.Securities[self.security].FeeModel = ConstantFeeModel(0) self.Securities[self.security].SlippageModel = ConstantSlippageModel(0) def OnData(self, slice): for i in range(len(self.df)): if slice.Time.hour==self.df.iloc[i,4] and slice.Time.minute==self.df.iloc[i,5]: self.MarketOrder(str(self.df.iloc[i,0]).replace(" ", ""),self.df.iloc[i,1]) self.df.iloc[i, 8] = self.Portfolio[str(self.df.iloc[i,0]).replace(" ", "")].AveragePrice for i in range(len(self.df)): if not slice.Bars.ContainsKey(str(self.df.iloc[i,0]).replace(" ", "")): return if self.df.iloc[i,8] != None : if (slice[str(self.df.iloc[i,0]).replace(" ", "")].Price > self.df.iloc[i,8] * self.df.iloc[i,3]): self.Liquidate(str(self.df.iloc[i,0]).replace(" ", "")," TAKE PROFIT @ " + str(slice[str(self.df.iloc[i,0]).replace(" ", "")].Price) +" AverageFillPrice " +str(self.df.iloc[i,8])) if (slice[str(self.df.iloc[i,0]).replace(" ", "")].Price < self.df.iloc[i,8] * self.df.iloc[i,2]): self.Liquidate(str(self.df.iloc[i,0]).replace(" ", "")," STOP LOSS @ " + str(slice[str(self.df.iloc[i,0]).replace(" ", "")].Price) +" AverageFillPrice " +str(self.df.iloc[i,8])) for i in range(len(self.df)): if slice.Time.hour==self.df.iloc[i,6] and slice.Time.minute==self.df.iloc[i,7]: self.Liquidate(str(self.df.iloc[i,0]).replace(" ", ""))