Overall Statistics |
Total Orders 3668 Average Win 6.65% Average Loss -0.78% Compounding Annual Return 180.007% Drawdown 48.000% Expectancy 3.214 Start Equity 100000 End Equity 280798.44 Net Profit 180.798% Sharpe Ratio 2.046 Sortino Ratio 4.124 Probabilistic Sharpe Ratio 63.363% Loss Rate 56% Win Rate 44% Profit-Loss Ratio 8.47 Alpha 1.482 Beta 1.486 Annual Standard Deviation 0.809 Annual Variance 0.655 Information Ratio 1.933 Tracking Error 0.796 Treynor Ratio 1.114 Total Fees $2992.10 Estimated Strategy Capacity $71000.00 Lowest Capacity Asset FB 32NKVTVVDZS92|FB V6OIPNZEM8V9 Portfolio Turnover 54.69% |
from AlgorithmImports import * from scipy.optimize import brentq import math from scipy.stats import norm class StraddleStrategy(QCAlgorithm): def Initialize(self): self.SetStartDate(2024, 1, 1) self.SetEndDate(2025, 1, 1) self.SetCash(100000) self.tech_stocks = ["AAPL", "MSFT", "GOOGL", "AMZN", "META", "TSLA", "NVDA"] self.equities = {} self.options = {} for stock in self.tech_stocks: equity = self.AddEquity(stock, Resolution.Minute).Symbol self.equities[stock] = equity option = self.AddOption(stock, Resolution.Minute) option.SetFilter(self.UniverseFilter) self.options[stock] = option for stock in self.equities: self.Schedule.On(self.DateRules.EveryDay(self.equities[stock]), self.TimeRules.AfterMarketOpen(self.equities[stock], 30), lambda stock=stock: self.Evaluate(stock)) # equity = "TSLA" # self.equity = self.AddEquity(equity, Resolution.Minute).Symbol # Add options for the underlying equity and set up the option universe filter # self.option = self.AddOption(equity, Resolution.Minute) # self.option.SetFilter(self.UniverseFilter) # Schedule the Evaluate method to run every day 30 minutes after market open # self.Schedule.On(self.DateRules.EveryDay(self.equity), # self.TimeRules.AfterMarketOpen(self.equity, 30), # self.Evaluate) def UniverseFilter(self, universe): # Select strikes within +/- 2 of the ATM strike and expirations up to 30 days return universe.Strikes(-2, 2).Expiration(timedelta(0), timedelta(30)) def Evaluate(self, stock): # Fetch the current option chain for the underlying symbol chain = self.CurrentSlice.OptionChains.get(self.options[stock].Symbol) if not chain: return # Calculate underlying price and identify ATM call and put options underlying_price = self.Securities[self.equities[stock]].Price atm_call, atm_put = self.GetATMOptions(chain, underlying_price) if not atm_call or not atm_put: self.Debug("No ATM options found") return # Calculate and log the implied volatilities of the ATM options call_iv = self.CalculateIV(atm_call, underlying_price) put_iv = self.CalculateIV(atm_put, underlying_price) if call_iv is None or put_iv is None: self.Debug("Could not calculate implied volatility") return avg_iv = (call_iv + put_iv) / 2 self.Debug(f"{stock} ATM Call IV: {call_iv:.2%}, Put IV: {put_iv:.2%}, Avg IV: {avg_iv:.2%}") # self.Debug(f"{self.equity} ATM Call IV: {call_iv:.2%}, Put IV: {put_iv:.2%}, Avg IV: {avg_iv:.2%}") # Check if the average implied volatility is below 0.5 and place a straddle if it is if avg_iv < 0.5: self.PlaceStraddle(atm_call, atm_put, stock) def GetATMOptions(self, chain, underlying_price): # Select the option contracts that are closest to being ATM atm_contract = min(chain, key=lambda x: abs(x.Strike - underlying_price)) atm_calls = [o for o in chain if o.Strike == atm_contract.Strike and o.Right == OptionRight.Call] atm_puts = [o for o in chain if o.Strike == atm_contract.Strike and o.Right == OptionRight.Put] return (atm_calls[0] if atm_calls else None, atm_puts[0] if atm_puts else None) def CalculateIV(self, contract, underlying_price): # Calculate implied volatility using the Black-Scholes model and brentq numerical method market_price = (contract.BidPrice + contract.AskPrice) / 2 if market_price <= 0: return None T = (contract.Expiry - self.Time).days / 365.0 if T <= 0: self.Debug("Skipping contract with non-positive time to expiry") return None def bs_price(sigma): # Define the Black-Scholes pricing formula dependent on sigma d1 = (math.log(underlying_price / contract.Strike) + (0.01 + 0.5 * sigma**2) * T) / (sigma * math.sqrt(T)) d2 = d1 - sigma * math.sqrt(T) if contract.Right == OptionRight.Call: return underlying_price * norm.cdf(d1) - contract.Strike * math.exp(-0.01 * T) * norm.cdf(d2) else: # Put return contract.Strike * math.exp(-0.01 * T) * norm.cdf(-d2) - underlying_price * norm.cdf(-d1) # Use brentq to find the sigma that makes the theoretical price equal to the market price try: return brentq(lambda sigma: bs_price(sigma) - market_price, 0.01, 2) except ValueError: return None def PlaceStraddle(self, atm_call, atm_put, stock): # Place orders for both ATM call and put, creating a straddle position self.MarketOrder(atm_call.Symbol, 1) self.MarketOrder(atm_put.Symbol, 1) self.Debug(f"Placed straddle: Call {atm_call.Symbol}, Put {atm_put.Symbol} for {stock}") self.Debug(f"Current Holdings: {[f'{symbol}: {holding.Quantity}' for symbol, holding in self.Portfolio.items() if holding.Invested]}")