Overall Statistics |
Total Trades 120 Average Win 2.94% Average Loss -2.80% Compounding Annual Return 1.323% Drawdown 28.000% Expectancy 0.016 Net Profit 0.321% Sharpe Ratio 0.442 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.05 Alpha 5.332 Beta -250.507 Annual Standard Deviation 0.837 Annual Variance 0.701 Information Ratio 0.418 Tracking Error 0.838 Treynor Ratio -0.001 Total Fees $730.26 |
from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp import decimal as d # import statsmodels.api as sm class abc(QCAlgorithm): def Initialize(self): self.SetStartDate(2007, 12, 31) self.SetEndDate(2008, 3, 30) self.SetCash(50000) self.equity = self.AddEquity("MOS", Resolution.Daily).Symbol self.Schedule.On(self.DateRules.EveryDay("MOS"), self.TimeRules.At(9, 35), Action(self.buy)) self.Schedule.On(self.DateRules.EveryDay("MOS"), self.TimeRules.At(16, 15), Action(self.sell)) def buy(self): self.SetHoldings(self.equity, 1) def sell(self): self.SetHoldings(self.equity, -1)