Overall Statistics |
Total Trades 4 Average Win 0.01% Average Loss -0.09% Compounding Annual Return -0.626% Drawdown 0.100% Expectancy -0.459 Net Profit -0.084% Sharpe Ratio -2.647 Probabilistic Sharpe Ratio 0.104% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.08 Alpha -0.006 Beta 0.003 Annual Standard Deviation 0.002 Annual Variance 0 Information Ratio -1.543 Tracking Error 0.22 Treynor Ratio -1.947 Total Fees $0.00 |
from datetime import timedelta import numpy as np import math import pandas as pd from sklearn.linear_model import LinearRegression from scipy.odr import Model, Data, ODR from scipy import stats from statistics import stdev from pykalman import KalmanFilter class VentralUncoupledShield(QCAlgorithm): def Initialize(self): self.SetStartDate(2018,12,15) # Set Start Date self.SetEndDate(2019,2,1) # Set End Date self.SetCash(10000) self.currency1='GBPUSD' self.currency2='USDJPY' #self.currency1='KO' #self.currency2='PEP' self.AddForex(self.currency1, Resolution.Hour, Market.Oanda) self.AddForex(self.currency2, Resolution.Hour, Market.Oanda) #self.AddEquity(self.currency1, Resolution.Daily, Market.USA) #self.AddEquity(self.currency2, Resolution.Daily, Market.USA) #kalman filter initialization self.delta = 1e-5 #process noise self.observation_cov=1e-3 #observation covariance self.no_of_std=1 self.counter=1 self.means=0 self.covs=0 self.spread=0 self.kf=0 self.std_upper=0 self.std_lower=0 self.trade_direction='' self.allocation=0.5 self.spread_inc_per = 0.30#%increase in spread from last trade self.spread_last = 0#last spread at trade self.pred_currency2 = 0 #charting self.Charts = dict() pairplot = Chart("Trade Plot") pairplot.AddSeries(Series(self.currency1, SeriesType.Line,0)) pairplot.AddSeries(Series(self.currency2, SeriesType.Line,1)) pairplot.AddSeries(Series("Pred_"+self.currency2,SeriesType.Line,1)) pairplot.AddSeries(Series("Spread", SeriesType.Bar, 2)) pairplot.AddSeries(Series("Hedge_ratio", SeriesType.Line,3)) pairplot.AddSeries(Series("Intercept", SeriesType.Line,4)) pairplot.AddSeries(Series("STD_upper_bound", SeriesType.Line,2)) pairplot.AddSeries(Series("STD_lower_bound", SeriesType.Line,2)) self.AddChart(pairplot) def Kalman_update(self,value1,value2): if self.counter == 1: trans_cov = self.delta / (1 - self.delta) * np.eye(2) obs_mat = [value1, 1] self.kf = KalmanFilter(n_dim_obs=1, n_dim_state = 2, initial_state_mean = np.zeros(2), initial_state_covariance = np.ones((2, 2)), transition_matrices = np.eye(2), observation_matrices = obs_mat, observation_covariance = self.observation_cov, transition_covariance = trans_cov) means, covs = self.kf.filter(np.asarray(value2)) self.means = means[0]#mean for slope and intercept self.covs = covs[0]#2X2 variance matrix for slope and intercept self.counter = self.counter + 1 else: obs_mat = np.asarray([[value1, 1]]) means, covs = self.kf.filter_update(self.means, self.covs, observation = value2, observation_matrix = obs_mat) self.means = means.data self.covs = covs def kf_spread(self,value1,value2): self.pred_currency2=self.means[0]*value1+self.means[1] self.spread = value2 - self.pred_currency2 def pair_quantity(self,value1,value2,hedge_ratio,fund): if hedge_ratio < 1: self.Debug('Hedge ratio {} is negative, need to swap the pair'.format(hedge_ratio)) value1_unit = 0 value2_unit = 0 else: lot=math.floor(fund/(value1*hedge_ratio+value2*1))#get lot value1_unit = math.floor(hedge_ratio*lot) value2_unit = math.floor(lot) return value1_unit,value2_unit #number of unit to buy in currency 1 , currency 2 def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if (data[self.currency1]==None or data[self.currency2]==None): return self.Kalman_update(data[self.currency1].Close,data[self.currency2].Close) self.kf_spread(data[self.currency1].Close,data[self.currency2].Close) #self.std_upper=np.sqrt(self.covs[0,0]) * self.no_of_std #self.std_lower=-1*self.std_upper self.std_upper= self.no_of_std self.std_lower= -self.no_of_std self.Debug('time:{} spread:{} slope:{} intercept:{} STD:{}'.format(data[self.currency1].Time,self.spread,self.means[0],self.means[1],np.sqrt(self.covs[0,0]))) self.Plot("Trade Plot",self.currency1,data[self.currency1].Close) self.Plot("Trade Plot",self.currency2,data[self.currency2].Close) self.Plot("Trade Plot","Pred_"+self.currency2,float(self.pred_currency2)) self.Plot("Trade Plot","Spread",float(self.spread)) self.Plot("Trade Plot","Hedge_ratio",float(self.means[0])) self.Plot("Trade Plot","Intercept",float(self.means[1])) self.Plot("Trade Plot","STD_upper_bound",float(self.std_upper)) self.Plot("Trade Plot","STD_lower_bound",float(self.std_lower)) if self.trade_direction == 'short_spread' and self.spread < 0 and self.Portfolio.Invested: self.Liquidate()#liquidate all self.trade_direction = '' self.spread_last = 0 elif self.trade_direction == 'long_spread' and self.spread > 0 and self.Portfolio.Invested: self.Liquidate()#liquidate all self.trade_direction = '' self.spread_last = 0 elif self.spread > self.std_upper and self.spread > (self.spread_last * (1+self.spread_inc_per)): currency1_unit,currency2_unit = self.pair_quantity(data[self.currency1].Close,data[self.currency2].Close,self.means[0],self.Portfolio.Cash*self.allocation) self.MarketOrder(self.currency2, -currency2_unit, True) self.MarketOrder(self.currency1, currency1_unit, True) self.trade_direction = 'short_spread' self.spread_last = self.spread elif self.spread < self.std_lower and self.spread < (self.spread_last * (1+self.spread_inc_per)): currency1_unit,currency2_unit = self.pair_quantity(data[self.currency1].Close,data[self.currency2].Close,self.means[0],self.Portfolio.Cash*self.allocation) self.MarketOrder(self.currency1, -currency1_unit, True) self.MarketOrder(self.currency2, currency2_unit, True) self.trade_direction = 'long_spread' self.spread_last = self.spread