Overall Statistics |
Total Trades 16 Average Win 4.97% Average Loss -1.64% Compounding Annual Return 13.116% Drawdown 7.100% Expectancy 1.018 Net Profit 13.116% Sharpe Ratio 1.092 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 3.04 Alpha 0.216 Beta -6.762 Annual Standard Deviation 0.097 Annual Variance 0.009 Information Ratio 0.923 Tracking Error 0.097 Treynor Ratio -0.016 Total Fees $41.46 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("System.Collections") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from System import * from System.Collections.Generic import List from System.Drawing import Color from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import numpy as np import decimal as d from datetime import timedelta, datetime ### <summary> ### Algorithm demonstrating custom charting support in QuantConnect. ### The entire charting system of quantconnect is adaptable. You can adjust it to draw whatever you'd like. ### Charts can be stacked, or overlayed on each other. Series can be candles, lines or scatter plots. ### Even the default behaviours of QuantConnect can be overridden. ### </summary> ### <meta name="tag" content="charting" /> ### <meta name="tag" content="adding charts" /> ### <meta name="tag" content="series types" /> ### <meta name="tag" content="plotting indicators" /> class CustomChartingAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2016,1,1) self.SetEndDate(2017,1,1) self.SetCash(100000) self.AddEquity("SPY", Resolution.Daily) # In your initialize method: # Chart - Master Container for the Chart: stockPlot = Chart("Trade Plot") # On the Trade Plotter Chart we want 3 series: trades and price: stockPlot.AddSeries(Series("Buy", SeriesType.Scatter, "", Color.Yellow)) stockPlot.AddSeries(Series("Sell", SeriesType.Scatter, "", Color.Red)) stockPlot.AddSeries(Series("Price", SeriesType.Line, "", Color.Blue)) self.AddChart(stockPlot) avgCross = Chart("Average Cross") avgCross.AddSeries(Series("FastMA", SeriesType.Line, 1)) avgCross.AddSeries(Series("SlowMA", SeriesType.Line, 1)) self.AddChart(avgCross) self.fastMA = 0 self.slowMA = 0 self.lastPrice = 0 self.resample = datetime.min self.resamplePeriod = (self.EndDate - self.StartDate) / 2000 def OnData(self, slice): if slice["SPY"] is None: return self.lastPrice = slice["SPY"].Close if self.fastMA == 0: self.fastMA = self.lastPrice if self.slowMA == 0: self.slowMA = self.lastPrice self.fastMA = (d.Decimal(0.01) * self.lastPrice) + (d.Decimal(0.99) * self.fastMA); self.slowMA = (d.Decimal(0.001) * self.lastPrice) + (d.Decimal(0.999) * self.slowMA); if self.Time > self.resample: self.resample = self.Time + self.resamplePeriod self.Plot("Average Cross", "FastMA", self.fastMA); self.Plot("Average Cross", "SlowMA", self.slowMA); # On the 5th days when not invested buy: if not self.Portfolio.Invested and self.Time.day % 13 == 0: self.Order("SPY", (int)(self.Portfolio.MarginRemaining / self.lastPrice)) self.Plot("Trade Plot", "Buy", self.lastPrice) elif self.Time.day % 21 == 0 and self.Portfolio.Invested: self.Plot("Trade Plot", "Sell", self.lastPrice) self.Liquidate() def OnEndOfDay(self): #Log the end of day prices: self.Plot("Trade Plot", "Price", self.lastPrice);