Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from sklearn import linear_model import numpy as np import pandas as pd from scipy import stats from math import floor from datetime import timedelta class PairsTradingAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018,1,1) self.SetEndDate(2020,1,20) self.SetCash(10000) self.numdays = 250 # set length of the training period tickers = ["AMD","ADBE"] self.symbols = [] self.threshold = 1. for i in tickers : self.symbols.append(self.AddSecurity(SecurityType.Equity , i , Resolution.Daily).Symbol) for i in self.symbols: i.hist_window = RollingWindow[Tradebar](self.numdays) def OnData(self, data): if not (data.ContainsKey("AMD") and data.ContainsKey("ADBE")): return for symbol in self.symbol(): symbol.hist_window.Add(data[symbol]) price_x = pd.Series([float(i.Close) for i in self.symbols[0].hist_window], index = [i.Time for i in self.symbols[0].hist_window]) price_y = pd.Series([float(i.Close) for i in self.symbols[1].hist_window], index = [i.Time for i in self.symbols[1].hist_window]) if len (price_x) < 250: return spread = self.regr(np.log(price_x), np.log(price_y)) #try later the rolling version and see if you can get a better results mean = np.mean(spread) std = np.std(spread) # >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) # >>> s.rolling(3).std() ratio = floor(self.Portfolio[self.symbols[1]].Price / self.Portfolio[self.symbols[0]].Price) # quantity = float(self.CalculateOrderQuantity(self.symbols[0] , 0.4) # upper threshold i.e. exit and entry signals if spread [-1] > mean + self.threshold * std: if not self.Portfolio[self.symbols[0]].Quantity > 0 and not self.Portfolio[self.symbols[0]].Quantity < 0: self.Sell(self.symbols[1], 100) self.Buy(self.symbols[0], ratio * 100) elif spread [-1] < mean - self.threshold * std: if not self.Portfolio[self.symbols[0]].Quantity < 0 and not self.Portfolio[self.symbols[0]].Quantity > 0: self.Sell(self.symbols[0], 100) self.Buy(self.symbols[1], ratio * std) else: self.Liquidate() # Your New Python File
class fading_the_gap(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 7, 19) # Set Start Date self.SetCash(100000) # Set Strategy Cash # self.AddEquity("TSLA", Resolution.Minute) # Create an event to run every day 0-minute after the close