Overall Statistics |
Total Trades 33 Average Win 18.06% Average Loss -1.44% Compounding Annual Return 104778.023% Drawdown 22.800% Expectancy 6.635 Net Profit 302.237% Sharpe Ratio 4.027 Loss Rate 44% Win Rate 56% Profit-Loss Ratio 12.57 Alpha 4.81 Beta 50.164 Annual Standard Deviation 1.364 Annual Variance 1.86 Information Ratio 4.017 Tracking Error 1.364 Treynor Ratio 0.109 Total Fees $717.78 |
# Allan Lin - EMA (Py) v0.01 # (Note: This was heavily copied from public) # (Spend a ton of time working on testing and graphing) import clr from clr import AddReference clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Indicators") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import decimal as d import numpy as np class CryptoWarmupMovingAverageCross(QCAlgorithm): def Initialize(self): # If Backtesting (Use this data) self.SetStartDate(2017, 10, 1) # Set Start Date self.SetEndDate(2017, 12, 12) # Set End Date self.SetCash(10000) # Set Strategy Cash # Default Values fast_period = 12 slow_period = 26 resolutionTime = Resolution.Hour self.__coin = "BTCUSD" # Set brokerage we are using: GDAX for cryptos self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) # Avoid Fees? # Ref: https://www.quantconnect.com/forum/discussion/3040/fees-on-limit-orders-on-gdax DefaultOrderProperties = GDAXOrderProperties() DefaultOrderProperties.PostOnly = True # Set crypto to BTC at 1 hour resolution self.AddCrypto(self.__coin, resolutionTime) # create a fast exponential moving average at daily resolution self.fast = self.EMA(self.__coin, fast_period, resolutionTime) # create a slow exponential moving average at daily resolution self.slow = self.EMA(self.__coin, slow_period, resolutionTime) # "slow_period + 1" because rolling window waits for one to fall off the back to be considered ready # History method returns a dict with a pandas.DataFrame history = self.History([self.__coin], slow_period + 1) # prints out the tail of the dataframe self.Log(str(history.loc[self.__coin].tail())) self.Log(str(history.loc[self.__coin].head())) # Populate warmup data for index, row in history.loc[self.__coin].iterrows(): self.fast.Update(index, row["close"]) self.slow.Update(index, row["close"]) # Log warmup status self.Log("FAST {0} READY. Samples: {1}".format("IS" if self.fast.IsReady else "IS NOT", self.fast.Samples)) self.Log("SLOW {0} READY. Samples: {1}".format("IS" if self.slow.IsReady else "IS NOT", self.slow.Samples)) # Adding the EMA Plot emaPlot = Chart("EMA") emaPlot.AddSeries(Series("SLOW", SeriesType.Line, 0)) emaPlot.AddSeries(Series("FAST", SeriesType.Line, 0)) emaPlot.AddSeries(Series("CROSS", SeriesType.Scatter, 0)) emaPlot.AddSeries(Series("PRICE", SeriesType.Line, 0)) self.AddChart(emaPlot) usdPlot = Chart("USD") usdPlot.AddSeries(Series("BUY", SeriesType.Scatter, 0)) usdPlot.AddSeries(Series("SELL", SeriesType.Scatter, 0)) usdPlot.AddSeries(Series("CASH", SeriesType.Line, 0)) self.AddChart(usdPlot) self.previous = None def OnData(self, data): # wait for our slow ema to fully initialize if not self.slow.IsReady: return # only once per Hour (temporary remove) if self.previous is not None and self.Time == self.previous: return # define a small tolerance on our checks to avoid bouncing tolerance = 0.00015 # Determine number of BTC held cash = self.Portfolio.Cash price = self.Securities[self.__coin].Price holdings = self.Portfolio[self.__coin].Quantity # Log stats #self.Log("{0} Holding {1} BTCUSD @ {2}".format(self.Time, holdings, holdings * price)) # Plot Points self.Plot("EMA", "SLOW", self.slow.Current.Value) self.Plot("EMA", "FAST", self.fast.Current.Value) self.Plot("USD", "PRICE", price) self.Plot("USD", "CASH", cash) # we only want to go long if we're currently short or flat if holdings <= 0.0001: # if the fast is greater than the slow, we'll go long if self.fast.Current.Value > self.slow.Current.Value * d.Decimal(1 + tolerance): self.Log("BUY >> {0}".format(price)) self.Plot("USD", "BUY", price) self.Plot("EMA", "CROSS", price) # Market Buys = Fees. #self.SetHoldings(self.__coin, 1) # Trying to Cut Cost (by doing a limit order) canBuyNumCoins = float(cash) / float(price) self.LimitOrder(self.__coin, canBuyNumCoins, price, "buy") # we only want to liquidate if we're currently long # if the fast is less than the slow we'll liquidate our long if holdings > 0.0001 and self.fast.Current.Value < self.slow.Current.Value: self.Log("SELL >> {0}".format(price)) self.Plot("USD", "SELL", price) self.Plot("EMA", "CROSS", price) # We won't use market sells (for same reason). self.SetHoldings(self.__coin, 0) self.Liquidate(self.__coin) #self.Sell(self.__coin, holdings) #self.Order(self.__coin, holdings, OrderType.StopMarket) #self.StopLimitOrder(self.__coin, holdings, price, "sell") self.previous = self.Time