Overall Statistics |
Total Trades 3 Average Win 0% Average Loss 0% Compounding Annual Return 104555.077% Drawdown 27.600% Expectancy 0 Net Profit 33.076% Sharpe Ratio 4.01 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 4.231 Beta 138.851 Annual Standard Deviation 1.567 Annual Variance 2.455 Information Ratio 4.001 Tracking Error 1.567 Treynor Ratio 0.045 Total Fees $18.50 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System.Core") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") from System import * from QuantConnect import * from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Data.UniverseSelection import * ### <summary> ### Demonstration of using coarse and fine universe selection together to filter down a smaller universe of stocks. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="universes" /> ### <meta name="tag" content="coarse universes" /> ### <meta name="tag" content="fine universes" /> class CoarseFundamentalTop3Algorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014,3,24) #Set Start Date self.SetEndDate(2014,4,7) #Set End Date self.SetCash(50000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # this add universe method accepts a single parameter that is a function that # accepts an IEnumerable<CoarseFundamental> and returns IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction) self.__numberOfSymbols = 3 self._changes = None # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] def OnData(self, slice): #self.Log(f"OnData({self.UtcTime}): Keys: {', '.join([key.Value for key in data.Keys])}") # if we have no changes, do nothing if self._changes is None: return # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: option = self.AddOption("GOOG") self.option_symbol = option.Symbol # set our strike/expiry filter for this option chain option.SetFilter(-2, +2, timedelta(0), timedelta(180)) chain = slice.OptionChains.GetValue(self.option_symbol) if chain is None: return # we sort the contracts to find at the money (ATM) contract with farthest expiration contracts = sorted(sorted(sorted(chain, \ key = lambda x: abs(chain.Underlying.Price - x.Strike)), \ key = lambda x: x.Expiry, reverse=True), \ key = lambda x: x.Right, reverse=True) # if found, trade it if len(contracts) == 0: return symbol = contracts[0].Symbol self.Liquidate(symbol) #self.MarketOrder(symbol, -1) # we want 1/N allocation in each security in our universe for security in self._changes.AddedSecurities: # when the added security is not Equity, continue. if security.Type != SecurityType.Equity: continue option = self.AddOption(security.Symbol.Value) self.option_symbol = option.Symbol # set our strike/expiry filter for this option chain option.SetFilter(-2, +2, timedelta(0), timedelta(180)) chain = slice.OptionChains.GetValue(self.option_symbol) if chain is None: return # we sort the contracts to find at the money (ATM) contract with farthest expiration contracts = sorted(sorted(sorted(chain, \ key = lambda x: abs(chain.Underlying.Price - x.Strike)), \ key = lambda x: x.Expiry, reverse=True), \ key = lambda x: x.Right, reverse=True) # if found, trade it if len(contracts) == 0: return symbol = contracts[0].Symbol self.SetHoldings(symbol, 1 / self.__numberOfSymbols) #self.MarketOrder(symbol, 1) self._changes = None # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes self.Log(f"OnSecuritiesChanged({self.UtcTime}):: {changes}") def OnOrderEvent(self, fill): self.Log(f"OnOrderEvent({self.UtcTime}):: {fill}")