Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 7.993% Drawdown 32.400% Expectancy 0 Net Profit 54.619% Sharpe Ratio 0.489 Probabilistic Sharpe Ratio 8.336% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.083 Beta -0.019 Annual Standard Deviation 0.164 Annual Variance 0.027 Information Ratio -0.324 Tracking Error 0.236 Treynor Ratio -4.127 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset CHRIS/CME_S1.QuandlCustomColumns 2S |
class QuandlImporterAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.quandlCode = "CHRIS/CME_S1" ## Optional argument - personal token necessary for restricted dataset # Quandl.SetAuthCode("your-quandl-token") self.SetStartDate(2016,1,1) #Set Start Date self.SetCash(40000) #Set Strategy Cash self.symbol = self.AddData(QuandlCustomColumns, self.quandlCode, Resolution.Daily, TimeZones.NewYork).Symbol def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' if not self.Portfolio.Invested: quantity = self.CalculateOrderQuantity(self.symbol, 1.) self.MarketOrder(self.symbol, quantity) # Quandl often doesn't use close columns so need to tell LEAN which is the "value" column. class QuandlCustomColumns(PythonQuandl): '''Custom quandl data type for setting customized value column name. Value column is used for the primary trading calculations and charting.''' def __init__(self): # Define ValueColumnName: cannot be None, Empty or non-existant column name self.ValueColumnName = "Last"