Overall Statistics |
Total Orders 3 Average Win 0% Average Loss 0% Compounding Annual Return 0.789% Drawdown 0.700% Expectancy 0 Start Equity 100000 End Equity 100044.5 Net Profit 0.044% Sharpe Ratio -0.528 Sortino Ratio -0.69 Probabilistic Sharpe Ratio 42.639% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.001 Beta 0.108 Annual Standard Deviation 0.017 Annual Variance 0 Information Ratio 1.187 Tracking Error 0.054 Treynor Ratio -0.085 Total Fees $3.00 Estimated Strategy Capacity $140000.00 Lowest Capacity Asset GOOCV 30IZW3ETPM1D2|GOOCV VP83T1ZUHROL Portfolio Turnover 0.08% |
# region imports from AlgorithmImports import * # endregion class BearPutLadderOptionStrategy(QCAlgorithm): def initialize(self): self.set_start_date(2017, 4, 1) self.set_end_date(2017, 4, 23) self.set_cash(100000) option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol # set our strike/expiry filter for this option chain option.set_filter(lambda x: x.strikes(-5, 5).expiration(0, 30)) def on_data(self, slice): if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Select the call Option contracts with the furthest expiry expiry = max([x.expiry for x in chain]) puts = [i for i in chain if i.expiry == expiry and i.right == OptionRight.PUT] if not puts: return # Select the strike prices from the remaining contracts strikes = sorted(set(x.strike for x in puts)) if len(strikes) < 3: return low_strike = strikes[0] middle_strike = strikes[1] high_strike = strikes[2] option_strategy = OptionStrategies.bear_put_ladder(self._symbol, high_strike, middle_strike, low_strike, expiry) self.buy(option_strategy, 1)