Overall Statistics |
Total Orders 218 Average Win 0.74% Average Loss -0.56% Compounding Annual Return 13.316% Drawdown 8.500% Expectancy 0.611 Start Equity 100000 End Equity 145501.93 Net Profit 45.502% Sharpe Ratio 1.024 Sortino Ratio 1.193 Probabilistic Sharpe Ratio 64.438% Loss Rate 30% Win Rate 70% Profit-Loss Ratio 1.32 Alpha 0 Beta 0 Annual Standard Deviation 0.075 Annual Variance 0.006 Information Ratio 1.232 Tracking Error 0.075 Treynor Ratio 0 Total Fees $288.00 Estimated Strategy Capacity $1400000.00 Lowest Capacity Asset SBC R735QTJ8XC9X Portfolio Turnover 1.93% |
# region imports from AlgorithmImports import * # endregion def get_r_o_a_score(fine): '''Get the Profitability - Return of Asset sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Return of Asset sub-score''' # Nearest ROA as current year data roa = fine.operation_ratios.ROA.three_months # 1 score if ROA datum exists and positive, else 0 score = 1 if roa and roa > 0 else 0 return score def get_operating_cash_flow_score(fine): '''Get the Profitability - Operating Cash Flow sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Operating Cash Flow sub-score''' # Nearest Operating Cash Flow as current year data operating_cashflow = fine.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months # 1 score if operating cash flow datum exists and positive, else 0 score = 1 if operating_cashflow and operating_cashflow > 0 else 0 return score def get_r_o_a_change_score(fine): '''Get the Profitability - Change in Return of Assets sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Change in Return of Assets sub-score''' # if current or previous year's ROA data does not exist, return 0 score roa = fine.operation_ratios.ROA if not roa.three_months or not roa.one_year: return 0 # 1 score if change in ROA positive, else 0 score score = 1 if roa.three_months > roa.one_year else 0 return score def get_accruals_score(fine): '''Get the Profitability - Accruals sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Accruals sub-score''' # Nearest Operating Cash Flow, Total Assets, ROA as current year data operating_cashflow = fine.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months total_assets = fine.financial_statements.balance_sheet.total_assets.three_months roa = fine.operation_ratios.ROA.three_months # 1 score if operating cash flow, total assets and ROA exists, and operating cash flow / total assets > ROA, else 0 score = 1 if operating_cashflow and total_assets and roa and operating_cashflow / total_assets > roa else 0 return score def get_leverage_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Leverage sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Leverage sub-score''' # if current or previous year's long term debt to equity ratio data does not exist, return 0 score long_term_debt_ratio = fine.operation_ratios.long_term_debt_equity_ratio if not long_term_debt_ratio.three_months or not long_term_debt_ratio.one_year: return 0 # 1 score if long term debt ratio is lower in the current year, else 0 score score = 1 if long_term_debt_ratio.three_months < long_term_debt_ratio.one_year else 0 return score def get_liquidity_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Liquidity sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Liquidity sub-score''' # if current or previous year's current ratio data does not exist, return 0 score current_ratio = fine.operation_ratios.current_ratio if not current_ratio.three_months or not current_ratio.one_year: return 0 # 1 score if current ratio is higher in the current year, else 0 score score = 1 if current_ratio.three_months > current_ratio.one_year else 0 return score def get_share_issued_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Number of Shares sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Number of Shares sub-score''' # if current or previous year's issued shares data does not exist, return 0 score shares_issued = fine.financial_statements.balance_sheet.share_issued if not shares_issued.three_months or not shares_issued.twelve_months: return 0 # 1 score if shares issued did not increase in the current year, else 0 score score = 1 if shares_issued.three_months <= shares_issued.twelve_months else 0 return score def get_gross_margin_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Gross Margin sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Gross Margin sub-score''' # if current or previous year's gross margin data does not exist, return 0 score gross_margin = fine.operation_ratios.gross_margin if not gross_margin.three_months or not gross_margin.one_year: return 0 # 1 score if gross margin is higher in the current year, else 0 score score = 1 if gross_margin.three_months > gross_margin.one_year else 0 return score def get_asset_turnover_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Asset Turnover Ratio sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Asset Turnover Ratio sub-score''' # if current or previous year's asset turnover data does not exist, return 0 score asset_turnover = fine.operation_ratios.assets_turnover if not asset_turnover.three_months or not asset_turnover.one_year: return 0 # 1 score if asset turnover is higher in the current year, else 0 score score = 1 if asset_turnover.three_months > asset_turnover.one_year else 0 return score
# region imports from AlgorithmImports import * from security_initializer import * from universe import FScoreUniverseSelectionModel # endregion class PensiveFluorescentYellowParrot(QCAlgorithm): def initSettings(self): self.InitCash = 100000 # Initial Starting Cash self.set_start_date(2020, 7, 1) self.set_end_date(2023, 7, 1) self.contribution_amount = 0 # Monthly Savings Deposit, set to 0 to only invest once self.WithDrawWhenXTimesWorthTheInvest = 0 # pull out all contributed invested cash when profit is X Times the Invest, set to 0 tu turn off behaviour self.doTaxes = 0 # Tax Calculation for Austria, set 0 to turn off self.taxPercent = 0.275 # Austrian Tax for Income through Stocks (Kapitalertragssteuer) self.fPVP = 0.3 # FreePortfolioValuePercentage self.risk = 0.2 # set maximum Risk fir whole portfolio self.rebalancefrequency = 7 # Rebalance Portfolio every X Days self.maxPrice = 5000 # maximum price for Stock in Universe Selector self.maxStocks = 5 # how many different stocks can be held at any time self.fscore_threshold = 7 # set the minimum F-Score a Stock must have def initZeros(self): self.yesterday_total_profit = 0 self.yesterday_total_fees = 0 self.Taxes = 0 self.TaxToPay = 0 self.Wins = 0 self.Losses = 0 self.Withdrawn = 0 self.WithDrawFlag = 0 self.profits = {} def initSchedules(self): self.Schedule.On(self.date_rules.year_end(), self.TimeRules.At(0,0,5), self.TaxPayDay) self.Schedule.On(self.DateRules.MonthStart(), self.TimeRules.At(12,0,0), self.contribute) def initialize(self): self.initSettings() self.initZeros() self.initSchedules() self.StartCash = self.InitCash self.SetCash(self.InitCash) ### Parameters ### # The Piotroski F-Score threshold we would like to invest into stocks with F-Score >= of that fscore_threshold = self.fscore_threshold ### Reality Modeling ### # Interactive Broker Brokerage fees and margin self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.CASH) # Custom security initializer self.set_security_initializer(CustomSecurityInitializer(self.brokerage_model, FuncSecuritySeeder(self.get_last_known_prices))) ### Universe Settings ### self.universe_settings.resolution = Resolution.Minute # Our universe is selected by Piotroski's F-Score and the max price which a stock can be and how much stocks should be maximum in Portfolio self.add_universe_selection(FScoreUniverseSelectionModel(self, fscore_threshold, self.maxPrice, self.maxStocks)) # Assume we want to just buy and hold the selected stocks, rebalance daily self.add_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(self.rebalancefrequency))) #self.add_alpha(EmaCrossAlphaModel()) # Avoid overconcentration of risk in related stocks in the same sector, we invest the same size in every sector self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) # Avoid placing orders with big bid-ask spread to reduce friction cost self.set_execution(SpreadExecutionModel(0.01)) # maximum 1% spread allowed # set Trailing Stop Risk Management self.add_risk_management(MaximumDrawdownPercentPortfolio(self.risk)) self.settings.SetMinimumOrderMargin=0.1 self.Settings.FreePortfolioValuePercentage = self.fPVP def on_securities_changed(self, changes): # Log the universe changes to test the universe selection model # In this case, the added security should be the same as the logged stocks with F-score >= 7 self.log(changes) def OnEndOfDay(self): if self.WithDrawWhenXTimesWorthTheInvest: self.Plot("Strategy Equity", "Deposited Cash", self.InitCash) # plot sum of deposited cash if self.doTaxes: self.Plot("Taxable Profit", "profit", self.Wins) #plot accumulated profit self.Plot("Losses for Taxcalc", "loss", self.Losses) #plot accumulated loss self.Plot("accum. paid taxes", "tax", self.Taxes) #plot accumulated paid taxes self.Plot("tax pay", "tax", self.TaxToPay) #plot tax which is paid if self.TaxToPay >=0: self.TaxtoPay = 0 def TaxPayDay(self): # routine to pay yearly taxes, only suitable for austrian tax law if self.doTaxes: tax_to_pay = (self.Wins + self.Losses)*self.taxPercent if(tax_to_pay >=0): self.liquidate() self.Portfolio.SetCash(self.Portfolio.CashBook[self.AccountCurrency].Amount - tax_to_pay) self.Taxes += tax_to_pay self.TaxToPay = tax_to_pay self.Wins = 0 self.Losses = 0 def OnOrderEvent(self, orderEvent): if orderEvent.Status == OrderStatus.Filled: profit = self.Portfolio[orderEvent.Symbol].LastTradeProfit if orderEvent.Symbol not in self.profits: self.profits[orderEvent.Symbol] = RollingWindow[float](10) self.profits[orderEvent.Symbol].Add(profit) if self.doTaxes: if orderEvent.Symbol in self.profits: if self.profits[orderEvent.Symbol].Count == 0 or profit != self.profits[orderEvent.Symbol][0]: self.profits[orderEvent.Symbol].Add(profit) if(self.profits[orderEvent.Symbol][0]>=0): self.Wins += self.profits[orderEvent.Symbol][0] if(self.profits[orderEvent.Symbol][0]<0): self.Losses += self.profits[orderEvent.Symbol][0] def contribute(self): if not self.WithDrawWhenXTimesWorthTheInvest == 0 and not self.WithDrawFlag: #contribute monthly if the contribution hasn't been pulled out self.InitCash += self.contribution_amount self.Portfolio.SetCash(self.Portfolio.CashBook[self.AccountCurrency].Amount + self.contribution_amount) if not self.WithDrawWhenXTimesWorthTheInvest== 0 and self.Portfolio.total_portfolio_value >= self.WithDrawWhenXTimesWorthTheInvest*self.InitCash and not self.WithDrawFlag: # stop contributing and pull out all initial invested money if the worth is X times the invest self.liquidate() self.Portfolio.SetCash(self.Portfolio.CashBook[self.AccountCurrency].Amount - self.InitCash) self.InitCash = 0 self.WithDrawFlag = 1
# region imports from AlgorithmImports import * # endregion class CustomSecurityInitializer(BrokerageModelSecurityInitializer): def __init__(self, brokerage_model: IBrokerageModel, security_seeder: ISecuritySeeder) -> None: super().__init__(brokerage_model, security_seeder) def initialize(self, security: Security) -> None: # First, call the superclass definition # This method sets the reality models of each security using the default reality models of the brokerage model super().initialize(security) # We want a slippage model with price impact by order size for reality modeling security.set_slippage_model(VolumeShareSlippageModel()) security.set_buying_power_model(CustomBuyingPowerModel()) class CustomBuyingPowerModel(BuyingPowerModel): def get_maximum_order_quantity_for_target_buying_power(self, parameters): quantity = super().get_maximum_order_quantity_for_target_buying_power(parameters).quantity quantity = np.floor(quantity / 105) * 100 return GetMaximumOrderQuantityResult(quantity) def has_sufficient_buying_power_for_order(self, parameters): return HasSufficientBuyingPowerForOrderResult(True) # Let's always return 0 as the maintenance margin so we avoid margin call orders def get_maintenance_margin(self, parameters): return MaintenanceMargin(0) # Override this as well because the base implementation calls GetMaintenanceMargin (overridden) # because in C# it wouldn't resolve the overridden Python method def get_reserved_buying_power_for_position(self, parameters): return parameters.result_in_account_currency(0)
# region imports from AlgorithmImports import * from f_score import * # endregion class FScoreUniverseSelectionModel(FineFundamentalUniverseSelectionModel): def __init__(self, algorithm, fscore_threshold, max_price = 10000, max_stocks = 0): super().__init__(self.select_coarse, self.select_fine) self.algorithm = algorithm self.fscore_threshold = fscore_threshold self.max_price = max_price self.max_stocks = max_stocks def select_coarse(self, coarse): '''Defines the coarse fundamental selection function. Args: algorithm: The algorithm instance coarse: The coarse fundamental data used to perform filtering Returns: An enumerable of symbols passing the filter''' # We only want stocks with fundamental data and price > $1 filtered = [x.symbol for x in coarse if x.has_fundamental_data and x.price > 1 and x.price <= self.max_price] return filtered def select_fine(self, fine): '''Defines the fine fundamental selection function. Args: algorithm: The algorithm instance fine: The fine fundamental data used to perform filtering Returns: An enumerable of symbols passing the filter''' # We use a dictionary to hold the F-Score of each stock f_scores = {} fine = sorted([symbol for symbol in fine], key=lambda x: x.market_cap, reverse=True) for f in fine: # Calculate the Piotroski F-Score of the given stock f_scores[f.symbol] = self.get_piotroski_f_score(f) if f_scores[f.symbol] >= self.fscore_threshold: self.algorithm.log(f"Stock: {f.symbol.id} :: F-Score: {f_scores[f.symbol]}") selected = [symbol for symbol, fscore in f_scores.items() if fscore >= self.fscore_threshold][:self.max_stocks] # Select the stocks with F-Score higher than the threshold return selected def get_piotroski_f_score(self, fine): '''A helper function to calculate the Piotroski F-Score of a stock Arg: fine: MorningStar fine fundamental data of the stock return: the Piotroski F-Score of the stock ''' # initial F-Score as 0 fscore = 0 # Add up the sub-scores in different aspects fscore += get_r_o_a_score(fine) fscore += get_operating_cash_flow_score(fine) fscore += get_r_o_a_change_score(fine) fscore += get_accruals_score(fine) fscore += get_leverage_score(fine) fscore += get_liquidity_score(fine) fscore += get_share_issued_score(fine) fscore += get_gross_margin_score(fine) fscore += get_asset_turnover_score(fine) return fscore