Overall Statistics |
Total Trades 16 Average Win 0.63% Average Loss -0.23% Compounding Annual Return 16.663% Drawdown 1.500% Expectancy 0.392 Net Profit 0.720% Sharpe Ratio 1.959 Probabilistic Sharpe Ratio 58.219% Loss Rate 62% Win Rate 38% Profit-Loss Ratio 2.71 Alpha 0.088 Beta 0.062 Annual Standard Deviation 0.058 Annual Variance 0.003 Information Ratio -2.873 Tracking Error 0.108 Treynor Ratio 1.828 Total Fees $29.60 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Orders import * from QuantConnect.Securities import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * from QuantConnect.Algorithm.Framework.Portfolio import * from QuantConnect.Algorithm.Framework.Selection import * from Alphas.ConstantAlphaModel import ConstantAlphaModel from Selection.FutureUniverseSelectionModel import FutureUniverseSelectionModel from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Risk import * from datetime import date, timedelta ### <summary> ### Basic template futures framework algorithm uses framework components ### to define an algorithm that trades futures. ### </summary> class BasicTemplateFuturesFrameworkAlgorithm(QCAlgorithm): def Initialize(self): self.UniverseSettings.Resolution = Resolution.Minute self.SetStartDate(2020, 7, 20) self.SetEndDate(2020, 8, 5) self.SetCash(100000) self.SetTimeZone("America/New_York") # set framework models self.SetUniverseSelection(FrontMonthFutureUniverseSelectionModel(self.SelectFutureChainSymbols)) self.SetAlpha(MyAlphaModel(self)) self.SetPortfolioConstruction(SingleSharePortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) self.SetRiskManagement(NullRiskManagementModel()) def SelectFutureChainSymbols(self, utcTime): return [ Symbol.Create(Futures.Indices.SP500EMini, SecurityType.Future, Market.CME) ] class FrontMonthFutureUniverseSelectionModel(FutureUniverseSelectionModel): '''Creates futures chain universes that select the front month contract and runs a user defined futureChainSymbolSelector every day to enable choosing different futures chains''' def __init__(self, select_future_chain_symbols): super().__init__(timedelta(1), select_future_chain_symbols) def Filter(self, filter): '''Defines the futures chain universe filter''' return (filter.FrontMonth() .OnlyApplyFilterAtMarketOpen()) class MyAlphaModel(AlphaModel): def __init__(self, algorithm): self.algo = algorithm symbol = algorithm.AddEquity("SPY", Resolution.Daily).Symbol # Warm up history history = algorithm.History(symbol, 1, Resolution.Daily).loc[symbol] for idx, row in history.iterrows(): self.UpdateIndicatorValue(row.high, row.low, row.close) algorithm.Consolidate(symbol, timedelta(1), self.ConsolidationHandler) def Update(self, algorithm, slice): if (algorithm.Time.minute == 0 and algorithm.Time.second == 0): algorithm.Log("indicator: " + str(self.indicator_value)) if not (algorithm.Time.hour == 1 and algorithm.Time.minute == 0 and algorithm.Time.second == 0): #algorithm.Debug("Not trading time") return [] algorithm.Plot("Custom", "Indicator", self.indicator_value) insights = [] for symbol in slice.Keys: if symbol.SecurityType != SecurityType.Future: continue if self.indicator_value is not None: if self.indicator_value < 0.2: insights.append(Insight.Price(symbol, timedelta(minutes=179), InsightDirection.Up)) if self.indicator_value > 0.8: insights.append(Insight.Price(symbol, timedelta(minutes=179), InsightDirection.Down)) return insights def ConsolidationHandler(self, consolidated): self.UpdateIndicatorValue(consolidated.High, consolidated.Low, consolidated.Close) def UpdateIndicatorValue(self, high, low, close): self.algo.Log("Market: {}, {}, {}".format(high, low, close)) if high != low: self.indicator_value = (close - low) / (high - low) else: self.indicator_value = None class SingleSharePortfolioConstructionModel(PortfolioConstructionModel): all_insights = [] def CreateTargets(self, algorithm, insights): targets = [] active_symbols = [] expired_symbols = [] active_insights = [] while len(self.all_insights) > 0: insight = self.all_insights.pop() symbol = insight.Symbol if insight.IsActive(algorithm.UtcTime): active_insights.append(insight) if symbol not in active_symbols: active_symbols.append(symbol) else: if symbol not in expired_symbols: expired_symbols.append(symbol) for insight in insights: active_insights.append(insight) if insight.Symbol not in active_symbols: active_symbols.append(insight.Symbol) self.all_insights = active_insights liquidate_symbols = [ symbol for symbol in expired_symbols if symbol not in active_symbols ] for symbol in active_symbols: targets.append(PortfolioTarget(symbol, 1)) for symbol in liquidate_symbols: targets.append(PortfolioTarget(symbol, 0)) return targets