Overall Statistics |
Total Trades 234 Average Win 4.27% Average Loss -2.89% Compounding Annual Return 112.390% Drawdown 30.600% Expectancy 0.174 Net Profit 35.987% Sharpe Ratio 2.042 Probabilistic Sharpe Ratio 59.913% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 1.47 Alpha 0 Beta 0 Annual Standard Deviation 0.593 Annual Variance 0.351 Information Ratio 2.042 Tracking Error 0.593 Treynor Ratio 0 Total Fees $234.00 Estimated Strategy Capacity $11000000.00 Lowest Capacity Asset TSLA UNU3P8Y3WFAD |
''' TickerState States a ticker can take while being processed against a brokerage. ''' from enum import Enum, auto class TickerState(Enum): NEW = auto() BUY = auto() SHORT = auto() LIQUIDATE = auto()
from datetime import datetime, timedelta from QuantConnect.Data.UniverseSelection import * from config import Config from universe import ScheduledUniverse from alpha import Alpha from portfolio import PortfolioConstruction from execute import OrderExecution from stop import StopPrices class OpeningRangeBreakoutDL(QCAlgorithm): ''' OpeningRangeBreakoutDL v1.0 Opening Range Breakout Using Downloaded Basket of Equities ''' def Initialize(self): # Configuration parameters self.config = Config(self) # Backtesting self.SetStartDate(2021, 2, 25) # Set backtest Start Date self.SetEndDate(2021, 7, 24) # Set backtest End Date self.SetCash(35000) # Set backtest Strategy Cash # Brokerage self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) # Scheduled universe construction self.UniverseSettings.Resolution = Resolution.Minute self.scheduledUniverse = ScheduledUniverse(self, self.config) self.AddUniverseSelection(ScheduledUniverseSelectionModel( self.DateRules.WeekEnd(), self.TimeRules.At(23, 50), self.scheduledUniverse.SelectSymbols)) # Alpha Model self.stopPrices = StopPrices() self.SetAlpha(Alpha(self.config, self.stopPrices)) # Portfolio Construction self.SetPortfolioConstruction(PortfolioConstruction(self.config)) # Execution Model self.SetExecution(OrderExecution(self.config, self.stopPrices))
from datetime import timedelta from ticker import TickerState class Alpha(AlphaModel): '''Alpha - Determine trading signals Insights are evaluated every X minutes, e.g. 10, but this method is called every minute. The indicators are likewise updated every minute. ''' def __init__(self, config, stopPrices): self.config = config self.stopPrices = stopPrices self.symbolDataBySymbol = {} def Update(self, algorithm, data): ''' Update - Scan symbol data for insights Called every minute. ''' def GenerateInsight(_sd, _direction, _state): # Create and return an Insight. # Set the SymbolData direction and state. insight = Insight.Price(_sd.symbol, timedelta(minutes=self.config.consolidationPeriod), _direction) _sd.direction = _direction _sd.state = _state return insight def CalcMidpoint(_high, _low): mid = abs((_high - _low) / 2) base = _low if _low < _high else _high return mid + base # List of Insights to emit insights = [] # # Scan for insights among our universe of symbols. # removedSymbolData = [] for s, sd in self.symbolDataBySymbol.items(): if sd.IsReady: # The opening bar status for this symbol is valid. price = data[sd.symbol].Close if data.Bars.ContainsKey(sd.symbol) else None if price is None: # Tradebar is not ready. continue if algorithm.Portfolio[sd.symbol].Invested: # # Invested in the ticker. # if sd.state == TickerState.LIQUIDATE: # End Of Day or ticker was removed. insights.append(GenerateInsight(sd, InsightDirection.Flat, TickerState.LIQUIDATE)) # Reset opening bar. sd.Clear() if sd.remove: # The ticker has been removed. Portfolio will handle closeout. removedSymbolData.append(s) # If invested, but TickerState is not LIQUIDATE, do nothing; # We are waiting for the market to act. else: # # We are not invested in this ticker. # # Only trade during the specified opening period. # if (data.Bars[sd.symbol].Time.hour == self.config.exitTime.hour \ and data.Bars[sd.symbol].Time.minute > self.config.exitTime.minute) \ or (data.Bars[sd.symbol].Time.hour > self.config.exitTime.hour): # Non-trading time period. if sd.state == TickerState.BUY or sd.state == TickerState.SHORT: # Past time for exit on this ticker, but it remains Ready and we are not invested. # Either timeout, error, or StopMarketOrder executed. algorithm.Log("StopMarketOrder, timeout, or error for {}".format(sd.symbol.Value)) # Treat as LIQUIDATE to clear the state in Portfolio. insights.append(GenerateInsight(sd, InsightDirection.Flat, TickerState.LIQUIDATE)) # Reset opening bar. sd.Clear() # Always continue to the next ticker. continue # # We are in the trading range time, we are not invested, the opening bar is valid. # Check to see if we've already issued an insight to BUY or SHORT. # If so, continue to wait. # N.B.: TickerState.LIQUIDATE is treated the same as TickerState.NEW # This is because the LIQUIDATE state should have resulted in clearing # the opening bar, which should prevent entry to this part of the state # engine unless the opening bar has been reacquired, and we are still in the # trading window. # if sd.state == TickerState.BUY or sd.state == TickerState.SHORT: continue # No insight issued yet. # Determine if there is an Opening Range Breakout. if price > sd.openingBar.High: # # Opening Range Breakout HIGH. # # Calculate appropriate StopMarketOrder price. ## Small percentage lower than the high bar. ## self.stopPrices[sd.symbol] = sd.openingBar.High * self.config.initialMargin self.stopPrices[sd.symbol] = CalcMidpoint(sd.openingBar.High, sd.openingBar.Low) # BUY the ticker. insights.append(GenerateInsight(sd, InsightDirection.Up, TickerState.BUY)) elif price < sd.openingBar.Low: # # Opening Range Breakout LOW. # # Calculate appropriate StopMarketOrder price. ## Small percentage higher than the low bar. ## self.stopPrices[sd.symbol] = sd.openingBar.Low * (1 + (1 - self.config.initialMargin)) self.stopPrices[sd.symbol] = CalcMidpoint(sd.openingBar.High, sd.openingBar.Low) # SHORT the ticker. insights.append(GenerateInsight(sd, InsightDirection.Down, TickerState.SHORT)) # Remove any deleted tickers. for s in removedSymbolData: del self.symbolDataBySymbol[s] return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: algorithm.Log("Adding ticker {}".format(added.Symbol.Value)) algorithm.Securities[added.Symbol].MarginModel = PatternDayTradingMarginModel() self.symbolDataBySymbol[added.Symbol] = SymbolData(self.config, algorithm, added.Symbol) else: algorithm.Log("Resetting ticker {}".format(added.Symbol.Value)) for removed in changes.RemovedSecurities: algorithm.Log("Removing ticker {}".format(removed.Symbol.Value)) symbolData = self.symbolDataBySymbol.get(removed.Symbol) if symbolData is not None: if algorithm.Portfolio[removed.Symbol].Invested: # We are invested in this ticker, so we must liquidate it. symbolData.state = TickerState.LIQUIDATE symbolData.remove = True class SymbolData: ''' Indicator for one symbol of our universe. Each indicator is updated automatically. ''' def __init__(self, config, algorithm, symbol): self.config = config self.symbol = symbol self.openingBar = None self.direction = None self.state = TickerState.NEW self.remove = False self.consolidator = algorithm.Consolidate(self.symbol, timedelta(minutes=self.config.consolidationPeriod), self.OnDataConsolidated) @property def IsReady(self): ''' The symbol data is ready when the openingBar has been collected. ''' return self.openingBar is not None def OnDataConsolidated(self, bar): if bar.Time.hour == self.config.entryTime.hour and bar.Time.minute == self.config.entryTime.minute: self.openingBar = bar elif bar.Time.hour == self.config.closeTime.hour and bar.Time.minute == self.config.closeTime.minute: self.ClosePosition() def ClosePosition(self): self.state = TickerState.LIQUIDATE def Clear(self): self.openingBar = None
from datetime import * from decimal import * class Config(): ''' Instantiate QuantConnect Parameters ''' def __init__(self, algorithm): # # Universe parameters # self.downloadFile = "https://www.dropbox.com/s/o0td3or2jrl4wz0/universe.txt?dl=1" # Calculated in universe.py/ScheduledUniverse.SelectSymbols() self.universeSize = 0 # # Alpha parameters # self.entryTime = datetime.strptime("09:30", "%H:%M") self.exitTime = datetime.strptime("10:30", "%H:%M") self.closeTime = datetime.strptime("13:30", "%H:%M") self.consolidationPeriod = int(algorithm.GetParameter("consolidationPeriod")) # # Portfolio Construction parameters # self.initialMargin = float(algorithm.GetParameter("initialMargin"))
# # Generic Simple Execution Model # from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") from System import * from QuantConnect import * from QuantConnect.Orders import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Portfolio import * class OrderExecution(ExecutionModel): ''' Immediately submits market orders to achieve the desired portfolio targets, with stop loss and end-of-day liquidation. ''' def __init__(self, config, stopPrices): '''Initializes a new instance of the simple Execution class''' self.config = config self.stopPrices = stopPrices def Execute(self, algorithm, targets): ''' Immediately submits orders for the specified portfolio targets. Implicit Args: stopPrices Stop prices for symbols being traded Args: algorithm: The algorithm instance targets: The portfolio targets to be ordered Positive quantity denotes an equity purchase Negative quantity denotes an equity sale Zero quantity denotes an equity liquidation ''' for target in targets: # Get quantity to be ordered. quantity = target.Quantity if quantity != 0: # BUY or SHORT the equity. algorithm.Log("Market order for {} shares of {}".format(quantity, target.Symbol.Value)) algorithm.MarketOrder(target.Symbol, quantity) # Create StopMarketOrder with price calculated by the AlphaModel. algorithm.Log("Stop Market order for {} shares of {} at ${:.2f}".format(quantity, target.Symbol.Value, self.stopPrices[target.Symbol])) algorithm.StopMarketOrder(target.Symbol, quantity, self.stopPrices[target.Symbol]) _direction = OrderDirection.Buy if quantity > 0 else OrderDirection.Sell algorithm.Log("Available cash ${:.2f}, remaining margin ${:.2f}".format(algorithm.Portfolio.Cash, algorithm.Portfolio.GetMarginRemaining(target.Symbol, _direction))) # Remove the Stop Market Order Price, which is matched to each BUY or SHORT. # If we do not maintain queue discipline, this will eventually provoke a run time exception. del self.stopPrices[target.Symbol] else: # Liquidating position. Will also cancel any StopMarket order. algorithm.Log("Liquidating {}".format(target.Symbol.Value)) algorithm.Liquidate(target.Symbol) algorithm.Log("Available cash now ${:.2f}".format(algorithm.Portfolio.Cash)) def OnSecuritiesChanged(self, algorithm, changes): # Event handler for securities added and removed. # changes.AddedSecurities: # We do not need to do anything for AddedSecurities. # changes.RemovedSecurities: # Liquidate removed securities. for removed in changes.RemovedSecurities: algorithm.Log("Liquidating removed security {}".format(removed.Symbol.Value)) algorithm.Liquidate(removed.Symbol) algorithm.Log("Available cash now ${:.2f}".format(algorithm.Portfolio.Cash))
# # Portfolio Construction # from clr import AddReference AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect import Resolution, Extensions from QuantConnect.Algorithm.Framework.Alphas import * from QuantConnect.Algorithm.Framework.Portfolio import * from itertools import groupby from datetime import datetime, timedelta from math import floor from ticker import TickerState class PortfolioConstruction(PortfolioConstructionModel): ''' PortfolioConstruction - Construct a portfolio based on Insights generated by the AlphaModel. Liquidation means a ticker has been delisted, or is otherwise unavailable. ''' def __init__(self, config): self.config = config self.symbolDataBySymbol = {} def CreateTargets(self, algorithm, insights): ''' CreateTargets for Portfolio Construction Scan insights looking for tickets we can purchase, hold, or sell. It is assumed that symbols can only appear once in any list of insights. ''' targets = [] # Portfolio targets to be returned for execution deletedSymbols = [] # We will delete these symbols. # Account for having possibly already expended some number of slices of our cash. cashSlicesLeft = self.config.universeSize - len(self.symbolDataBySymbol) for insight in insights: sd = self.symbolDataBySymbol.get(insight.Symbol) if sd is None: # # We do not own this ticker. # if cashSlicesLeft == 0: # No cash / margin slices left; cannot BUY or SHORT this ticker. continue if insight.Direction == InsightDirection.Up: # Buy this ticker. # Calculate the number of shares to buy. marginRemaining = algorithm.Portfolio.GetMarginRemaining(insight.Symbol, OrderDirection.Buy) cash = algorithm.Portfolio.Cash margin = marginRemaining if marginRemaining <= cash else cash sharePrice = algorithm.Securities[insight.Symbol].Close shares = floor((margin / cashSlicesLeft) / sharePrice) if margin < 0 or shares == 0: algorithm.Log("Not enough buying power to buy long ticker {} {} shares at ${:.2f}".format(insight.Symbol.Value, shares, sharePrice)) continue # Create target for appropriate number of shares. algorithm.Log("Buying long ticker {} {} shares at ${:.2f}".format(insight.Symbol.Value, shares, sharePrice)) targets.append(PortfolioTarget(insight.Symbol, shares)) # Record pending ticker purchase. self.symbolDataBySymbol[insight.Symbol] = SymbolData(self.config, insight.Symbol, sharePrice, shares, TickerState.BUY) elif insight.Direction == InsightDirection.Down: # Short the ticker. # Calculate the number of shares to sell. margin = algorithm.Portfolio.GetMarginRemaining(insight.Symbol, OrderDirection.Sell) * self.config.initialMargin sharePrice = algorithm.Securities[insight.Symbol].Close shares = floor((margin / cashSlicesLeft) / sharePrice) if margin < 0 or shares == 0: algorithm.Log("Not enough buying power to sell short ticker {} {} shares at ${:.2f}".format(insight.Symbol.Value, -shares, sharePrice)) continue # Create target for appropriate number of shares. algorithm.Log("Short selling ticker {} {} shares at ${:.2f}".format(insight.Symbol.Value, -shares, sharePrice)) targets.append(PortfolioTarget(insight.Symbol, -shares)) # Record pending ticker purchase. self.symbolDataBySymbol[insight.Symbol] = SymbolData(self.config, insight.Symbol, sharePrice, -shares, TickerState.SHORT) else: # # We own this ticker. # if insight.Direction == InsightDirection.Flat \ or sd.state == TickerState.LIQUIDATE: # Liquidate the ticker. # We expect shares to be zero for this insight, # but in fact we don't care; this might be a delisted stock. algorithm.Log("Liquidating ticker {} {} shares at ${:.2f}".format(sd.symbol.Value, sd.shares, sd.price)) # Liquidate the position. targets.append(PortfolioTarget(insight.Symbol, 0)) sd.state = TickerState.LIQUIDATE deletedSymbols.append(sd) else: algorithm.Log("ERROR: Unexpected insight direction or ticker state, should only be Flat or LIQUIDATE, \ninsight direction {}, ticker state {}".format(insight.Direction, sd.state)) deletedSymbols.append(sd) # Remove the deleted symbols. for sd in deletedSymbols: self.symbolDataBySymbol.pop(sd.symbol, None) # Return the portfolio targets. return targets def OnSecuritiesChanged(self, algorithm, changes): # Event handler for securities added and removed. # changes.AddedSecurities: # We do not need to do anything for AddedSecurities. # changes.RemovedSecurities: for removed in changes.RemovedSecurities: sd = self.symbolDataBySymbol.get(removed.Symbol) if sd is not None: sd.state = TickerState.LIQUIDATE class SymbolData: ''' Symbol data for each ticker held in our portfolio ''' def __init__(self, config, symbol, price, shares, state): self.config = config self.symbol = symbol self.price = price self.shares = shares self.state = state
class StopPrices(dict): """ StopPrices Dictionary holding Stop Market prices for equities being traded. """ def __init__(self, **kwargs): # noinspection PyTypeChecker dict.__init__(self, kwargs) self.__dict__=self
class ScheduledUniverse(): '''Select a new universe on a schedule by downloading a file. The file must have one ticker per line. Each line has three string fields, separated by commas ",". 1 - Ticker 2 - Security Type 3 - Market If the Security Type or Market cannot be parsed, they are replaced with SecurityType.Equity and Market.USA, respectively. Severly malformed files may result in an abort of the trading algorithm. ''' def __init__(self, algorithm, config): self.algorithm = algorithm self.config = config def SelectSymbols(self, DateTime): symbols = [] self.algorithm.Log("Reading symbol file {}".format(self.config.downloadFile)) file = self.algorithm.Download(self.config.downloadFile) for line in file.splitlines(): (symbolStr, securityTypeStr, marketStr) = line.split(sep=",") self.algorithm.Log("Adding symbol {} of type {} in market {}".format(symbolStr, securityTypeStr, marketStr)) securityType = self.ParseSecurityType(securityTypeStr) market = self.ParseMarket(marketStr) symbols.append(Symbol.Create(symbolStr, securityType, market)) self.config.universeSize = len(symbols) self.algorithm.Log("Universe size {} symbols".format(self.config.universeSize)) return symbols securityStr2Type = { "Equity" : SecurityType.Equity, "Option" : SecurityType.Option, "Future" : SecurityType.Future, "Forex" : SecurityType.Forex, "Crypto" : SecurityType.Crypto, "Cfd" : SecurityType.Cfd, } def ParseSecurityType(self, securityTypeStr): securityType = SecurityType.Equity for s in ScheduledUniverse.securityStr2Type.keys(): if securityTypeStr == s: securityType = ScheduledUniverse.securityStr2Type[s] break return securityType marketStr2Type = { "USA" : Market.USA, "FXCM" : Market.FXCM, "GDAX" : Market.GDAX, "Bitfinex" : Market.Bitfinex, "Oanda" : Market.Oanda, } def ParseMarket(self, marketTypeStr): market = Market.USA for s in ScheduledUniverse.marketStr2Type.keys(): if marketTypeStr == s: market = ScheduledUniverse.marketStr2Type[s] break return market