Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0.156 Tracking Error 0.141 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports from AlgorithmImports import * from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel # endregion class DeterminedTanKitten(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) # Set Start Date self.SetEndDate(2019, 1, 1) # Set Start Date self.SetCash(1000000) # Set Strategy Cash self.AddUniverseSelection(FSTopMarketCapUniverseSelectionModel(sector = MorningstarSectorCode.FinancialServices, number = 3, universe_settings = self.UniverseSettings)) def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: self.Debug(f"Added {security.Symbol}") for security in changes.RemovedSecurities: self.Debug(f"Removed {security.Symbol}") # def OnData(self, data: Slice): # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 0.33) # self.SetHoldings("BND", 0.33) # self.SetHoldings("AAPL", 0.33) class FSTopMarketCapUniverseSelectionModel(FineFundamentalUniverseSelectionModel): def __init__(self, sector: MorningstarSectorCode, number: int, universe_settings: UniverseSettings = None) -> None: super().__init__(self.SelectCoarse, self.SelectFine, universe_settings) self.sector = sector self.number = number def SelectCoarse(self, coarse: List[CoarseFundamental]) -> List[Symbol]: #1. Filt to securities with fundamental data return [c.Symbol for c in coarse if c.HasFundamentalData] def SelectFine(self, fine: List[FineFundamental]) -> List[Symbol]: #2. Select financial sector filtered_fine = [x for x in fine if x.AssetClassification.MorningstarSectorCode == self.sector] #3. Order by market cap descending. sorted_by_mkcap = sorted(filtered_fine, key=lambda x: x.MarketCap, reverse=True) #4. From different companies companyId = {} for c in sorted_by_mkcap: identifier = c.CompanyReference.CompanyId if not(companyId.get(identifier)): companyId[identifier] = c.Symbol if len(companyId)>=self.number: return list(companyId.values()) return list(companyId.values()) # Return Top "number" assets by highest Market Cap in fianancial sector