Overall Statistics
Total Trades
651
Average Win
0.87%
Average Loss
-0.18%
Compounding Annual Return
10.595%
Drawdown
44.200%
Expectancy
0.948
Net Profit
293.243%
Sharpe Ratio
0.639
Probabilistic Sharpe Ratio
6.451%
Loss Rate
66%
Win Rate
34%
Profit-Loss Ratio
4.75
Alpha
0.069
Beta
0.545
Annual Standard Deviation
0.2
Annual Variance
0.04
Information Ratio
0.103
Tracking Error
0.19
Treynor Ratio
0.234
Total Fees
$30474.09
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter
import pandas as pd

def AddDrawdownInformation(df):

    # convert to cumulative return series
    cumRetSeries = df.add(1).cumprod()
    
    # initialize variables
    lastPeak = cumRetSeries.iloc[0][0]
    cumRetSeries['drawdown'] = 1
    cumRetSeries['ddGroup'] = 0

    # loop through the series and calculate drawdown
    count = 0
    for i in range(len(cumRetSeries)):
        if cumRetSeries.iloc[i, 0] < lastPeak:
            cumRetSeries.iloc[i, 1] = cumRetSeries.iloc[i, 0] / lastPeak
            cumRetSeries.iloc[i, 2] = count
        else:
            lastPeak = cumRetSeries.iloc[i, 0]
            cumRetSeries.iloc[i, 2] = count
            count += 1
        
    cumRetSeries['drawdown'] = cumRetSeries['drawdown'] - 1
    
    # get the max drawdown per group
    maxDrawdown = cumRetSeries.groupby('ddGroup', as_index = False)['drawdown'].min()
    maxDrawdown = maxDrawdown['drawdown']
    maxDrawdown = maxDrawdown.to_frame()
    maxDrawdown.columns = ['maxDrawdown']
    # get the start of the drawdown for each group
    startDrawdown = {key: value[0].date() for key, value in cumRetSeries.groupby('ddGroup').groups.items()}
    startDrawdown = pd.DataFrame.from_dict(startDrawdown, orient = 'index')
    startDrawdown.columns = ['startDrawdown']
    # get the end of the drawdown for each group
    endDrawdown = {key: value[-1].date() for key, value in cumRetSeries.groupby('ddGroup').groups.items()}
    endDrawdown = pd.DataFrame.from_dict(endDrawdown, orient = 'index')
    endDrawdown.columns = ['endDrawdown']
    # get the bottom of the drawdown for each group
    bottomDrawdown = cumRetSeries.groupby('ddGroup', as_index = False)['drawdown'].idxmin()
    bottomDrawdown = bottomDrawdown.to_frame()
    bottomDrawdown.columns = ['bottomDrawdown']
    
    infoDrawdown = pd.concat([startDrawdown, bottomDrawdown, endDrawdown, maxDrawdown], axis = 1)
    finalDf = pd.merge(cumRetSeries, infoDrawdown, how = 'inner', left_on = 'ddGroup', right_index = True)
        
    return finalDf
        
def AddDrawupInformation(drawdownDf, minimumDrawdownBetweenDrawups = 0.02):
    
    # initialize variables
    df = drawdownDf.copy()
    df['drawup'] = 1
    df['duGroup'] = 0
    
    # loop through the dataframe and calculate drawup
    count = 0
    newDrawdown = False
    for i in range(len(df)):
        # check if we started a new drawdown
        if df.iloc[i].name == df.iloc[i, 3] and df.iloc[i, 6] < minimumDrawdownBetweenDrawups * -1:
            newDrawdown = True
        
        if df.iloc[i].name == df.iloc[i, 4] and df.iloc[i, 6] < minimumDrawdownBetweenDrawups * -1:
            lastBottom = df.iloc[i, 0]
            newDrawdown = False
            count += 1
            
        if not newDrawdown and count > 0:
            df.iloc[i, 7] = df.iloc[i, 0] / lastBottom
            df.iloc[i, 8] = count
            
    df['drawup'] = df['drawup'] - 1
    
    # get the max drawup per group
    maxDrawup = df.groupby('duGroup')['drawup'].max()
    maxDrawup = maxDrawup.to_frame()
    maxDrawup.columns = ['maxDrawup']
    
    finalDf = pd.merge(df, maxDrawup, how = 'left', left_on = 'duGroup', right_index = True)

    return finalDf

def PlotDrawdownSeries(df, maxDays = 100, minimumMaxDrawdown = 0.1):
    
    filteredDf = df[(df['maxDrawdown'] <= minimumMaxDrawdown * -1) & (df.index >= df['startDrawdown']) & (df.index <= df['bottomDrawdown'])]
    grouped = filteredDf.groupby('ddGroup')
    
    plt.figure(figsize = (10, 10))
    for name, group in grouped:
        y = [0] + group['drawdown'].values[:maxDays].tolist()
        y = [i * 100 for i in y]
        x = [i for i in range(len(y))]
        
        fromDate = group['startDrawdown'][0].strftime('%Y-%m-%d')
        toDate = group['bottomDrawdown'][0].strftime('%Y-%m-%d')
        plt.plot(x, y, label = fromDate + '/' + toDate, linewidth = 1)
        
        plt.title('Historical Drawdown Series With Max DD Above ' + '{:.0%}'.format(abs(minimumMaxDrawdown))
                  + '\n First ' + str(maxDays) + ' Trading Days')
        plt.gca().yaxis.set_major_formatter(PercentFormatter(decimals = 0))
        plt.gca().spines['right'].set_visible(False)
        plt.gca().spines['top'].set_visible(False)
        plt.gca().xaxis.set_ticks_position('none')
        plt.gca().yaxis.set_ticks_position('none')
        plt.axhline(y = 0, color = 'black', linestyle = '-', linewidth = 1)
    
    plt.legend(loc = 'right', bbox_to_anchor = (1.5, 0.5), ncol = 1, frameon = False)
    plt.show()

def PlotDrawupSeries(df, maxDays = 100, minimumMaxDrawup = 0.1):
    
    filteredDf = df[(df['duGroup'] != 0) & (df['maxDrawup'] > minimumMaxDrawup)]
    grouped = filteredDf.groupby('duGroup')

    plt.figure(figsize = (10, 10))
    for name, group in grouped:
        y = [0] + group['drawup'].values[:maxDays].tolist()
        y = [i * 100 for i in y]
        x = [i for i in range(len(y))]
        
        fromDate = group.index[0].strftime('%Y-%m-%d')
        toDate = group.index[-1].strftime('%Y-%m-%d')
        plt.plot(x, y, label = fromDate + '/' + toDate, linewidth = 1)
        
        plt.title('Historical Drawdup Series With Max DU Above ' + '{:.0%}'.format(abs(minimumMaxDrawup))
                  + '\n First ' + str(maxDays) + ' Trading Days')
        plt.gca().yaxis.set_major_formatter(PercentFormatter(decimals = 0))
        plt.gca().spines['right'].set_visible(False)
        plt.gca().spines['top'].set_visible(False)
        plt.gca().xaxis.set_ticks_position('none')
        plt.gca().yaxis.set_ticks_position('none')
        plt.axhline(y = 0, color = 'black', linestyle = '-', linewidth = 1)
    
    plt.legend(loc = 'right', bbox_to_anchor = (1.5, 0.5), ncol = 1, frameon = False)
    plt.show()
from QuantConnect.Securities.Option import *
from datetime import timedelta
import math

def RebalanceUnderlying(self, shares = None):
    
    ''' Rebalance holdings for the underlying asset '''

    if self.tradingLogs:
        self.Log('information before rebalancing underlying'
        + '; MarginRemaining: ' + str(self.Portfolio.MarginRemaining)
        + '; TotalPortfolioValue: ' + str(self.Portfolio.TotalPortfolioValue)
        + '; Underlying HoldingsValue: ' + str(self.Portfolio[self.underlyingSymbol].HoldingsValue)
        + '; Cash: ' + str(self.Portfolio.Cash))
    
    # calculate the new target percent for the underlying
    if shares is None:
        shares = int(self.Portfolio.Cash / self.Securities[self.underlyingSymbol].Price)
        self.MarketOrder(self.underlyingSymbol, shares, False, str('Rebalancing Underlying ' + self.specialTag))
    else:
        self.MarketOrder(self.underlyingSymbol, shares, False, str('Rebalancing Underlying ' + self.specialTag))
    
    self.specialTag = ''
    
    if self.tradingLogs:
        self.Log('information after rebalancing underlying'
        + '; MarginRemaining: ' + str(self.Portfolio.MarginRemaining)
        + '; TotalPortfolioValue: ' + str(self.Portfolio.TotalPortfolioValue)
        + '; Underlying HoldingsValue: ' + str(self.Portfolio[self.underlyingSymbol].HoldingsValue)
        + '; Cash: ' + str(self.Portfolio.Cash))
    
def EnterOptionContracts(self, expiryGroup, expiryGroupSymbol, calendarType, positionSizing, maxExpiryDays, daysToRollBeforeExpiration,
                        dictCalls, dictPuts, daysToExpiration = None, remainingContractsValue = None):
    
    ''' Enter option contracts '''
    
    if self.checkNextDay:
        return False
    
    # get only the valid calls/puts for which we actually want to trade
    dictValidCalls = {key: value for key, value in dictCalls.items() if value[1] is not None and value[1] != 0}
    dictValidPuts = {key: value for key, value in dictPuts.items() if value[1] is not None and value[1] != 0}
    
    # get dictionaries with relevant contracts for calls and puts
    try:
        dictContracts = GetTradingContracts(self, expiryGroupSymbol, calendarType, maxExpiryDays, daysToRollBeforeExpiration, dictValidCalls, dictValidPuts)
    except BaseException as e:
        if self.tradingLogs:
            self.Log('GetTradingContracts function failed due to: ' + str(e))
        dictContracts = {'calls': {}, 'puts': {}}

    # create a list with all the contracts for calls and puts to added and traded
    listContracts = list(dictContracts['calls'].values()) + list(dictContracts['puts'].values())
    
    if len(listContracts) == 0:
        return False
    
    # loop through filtered contracts and add them to get data
    for contract in listContracts:
        option = self.AddOptionContract(contract, Resolution.Minute)
        option.PriceModel = OptionPriceModels.CrankNicolsonFD() # apply options pricing model
        CustomSecurityInitializer(self, self.Securities[contract])

    # check the validity of the contracts
    validContracts = CheckContractValidity(self, listContracts, expiryGroup)
    if not validContracts:
        return False

    # separate long/short calls/puts
    dictLongs, dictShorts = {}, {}
    dictLongs['calls'] = {key: value for key, value in dictValidCalls.items() if value[1] > 0}
    dictLongs['puts'] = {key: value for key, value in dictValidPuts.items() if value[1] > 0}
    dictShorts['calls'] = {key: value for key, value in dictValidCalls.items() if value[1] < 0}
    dictShorts['puts'] = {key: value for key, value in dictValidPuts.items() if value[1] < 0}

    # entering legs ------------------------------------------------------------
    
    # get adjusted budget
    adjustedAnnualBudget = CalculateAdjustedAnnualBudget(self, daysToRollBeforeExpiration, daysToExpiration)
    
    # apply multiplier budget for position sizing -----------
    if positionSizing == 'multiplier':
        # calculate the budget for options
        budgetOptions = CalculateBudgetOptions(self, expiryGroupSymbol, adjustedAnnualBudget, 1, remainingContractsValue)
        # calculate sum product of option prices for the entire expiry group
        sumProdOptionPrices = CalculateSumProdOptionPrices(self, dictContracts, dictLongs, dictShorts)
        # calculate the number of contracts to trade
        numberOfContracts = (budgetOptions / 100) / sumProdOptionPrices
        
        # check notional ratio
        notionalRatio = 0
        notionalCoverage = numberOfContracts * 100
        if expiryGroupSymbol in self.Portfolio.Keys:
            underlyingShares = self.Portfolio[expiryGroupSymbol].Quantity
        else:
            underlyingShares = 0
            
        if underlyingShares > 0:
            notionalRatio = notionalCoverage / underlyingShares
            
        self.Plot('Chart Notional', str(maxExpiryDays) + 'x' + str(daysToRollBeforeExpiration) + ' notionalRatio (%)', round(notionalRatio * 100, 0))
        
        if abs(numberOfContracts) < 1:
            self.specialTag = '(' + expiryGroup + ' trades missing since numberOfContracts < 1 on ' + str(self.Time.date()) + ')'
            if self.tradingLogs:
                self.Log(expiryGroup + ': numberOfContracts to trade < 1')
    # -------------------------------------------------------

    # start with short positions to get the premium
    shortContractsValue = 0
    for optionSide, strikeGroups in dictShorts.items():
        for strikeGroup, value in strikeGroups.items():
            if positionSizing == 'dollar':
                # calculate the number of option contracts to trade
                annualBudgetPercent = value[1]
                optionPrice = self.Securities[dictContracts[optionSide][strikeGroup]].BidPrice
                budgetOptions = CalculateBudgetOptions(self, expiryGroupSymbol, adjustedAnnualBudget, annualBudgetPercent, remainingContractsValue)
                shortContractsValue += budgetOptions
                shortNumberOfContracts = (budgetOptions / 100) / optionPrice
                notionalRatio = CalculateNotionalRatio(self, shortNumberOfContracts, expiryGroupSymbol)
                self.Plot('Chart Notional', str(maxExpiryDays) + 'x' + str(daysToRollBeforeExpiration) + ' notionalRatio (%)', round(notionalRatio * 100, 0))
                
                if abs(shortNumberOfContracts) < 1:
                    self.specialTag = '(' + expiryGroup + '/' + strikeGroup + ' short trade missing since < 1 contract on ' + str(self.Time.date()) + ')'
                    if self.tradingLogs:
                        self.Log(expiryGroup + '/' + strikeGroup + ': numberOfContracts to short is less than 1')
                    continue
            else:
                multiplier = value[1]
                shortContractsValue += budgetOptions * multiplier
                shortNumberOfContracts = numberOfContracts * multiplier
            
            self.MarketOrder(dictContracts[optionSide][strikeGroup], shortNumberOfContracts, False,
                            expiryGroup + '; short ' + optionSide + '; strike ' + '{:.0%}'.format(value[0])
                            + ' vs atm; notional ratio ' + '{:.0%}'.format(notionalRatio))
                            
    # long positions
    longContractsValue = 0
    for optionSide, strikeGroups in dictLongs.items():
        for strikeGroup, value in strikeGroups.items():
            if positionSizing == 'dollar':
                # calculate the number of option contracts to trade
                annualBudgetPercent = value[1]
                optionPrice = self.Securities[dictContracts[optionSide][strikeGroup]].AskPrice
                budgetOptions = CalculateBudgetOptions(self, expiryGroupSymbol, adjustedAnnualBudget, annualBudgetPercent, remainingContractsValue)
                longContractsValue += budgetOptions
                longNumberOfContracts = (budgetOptions / 100) / optionPrice
                notionalRatio = CalculateNotionalRatio(self, longNumberOfContracts, expiryGroupSymbol)
                self.Plot('Chart Notional', str(maxExpiryDays) + 'x' + str(daysToRollBeforeExpiration) + ' notionalRatio (%)', round(notionalRatio * 100, 0))
                
                if longNumberOfContracts < 1:
                    self.specialTag = '(' + expiryGroup + '/' + strikeGroup + ' long trade missing since < 1 contract on ' + str(self.Time.date()) + ')'
                    if self.tradingLogs:
                        self.Log(expiryGroup + '/' + strikeGroup + ': numberOfContracts to long is less than 1')
                    continue
            else:
                multiplier = value[1]
                longContractsValue += budgetOptions * multiplier
                longNumberOfContracts = numberOfContracts * multiplier
            
            self.MarketOrder(dictContracts[optionSide][strikeGroup], longNumberOfContracts, False,
                            expiryGroup + '; long ' + optionSide + '; strike ' + '{:.0%}'.format(value[0])
                            + ' vs atm; notional ratio ' + '{:.0%}'.format(notionalRatio))
    
    # information for allContractsByExpiryGroup --------------------------------
    
    # initial contracts value
    initialContractsValue = shortContractsValue + longContractsValue
    
    # save the date when we enter the positions
    entryDate = self.Time
    
    # get the next expiry date
    nextExpiryDate = listContracts[0].ID.Date

    # check if we have calls/puts or bo
    if dictValidCalls and dictValidPuts:
        legs = 'both'
    elif dictValidCalls and not dictValidPuts:
        legs = 'calls'
    elif not dictValidCalls and dictValidPuts:
        legs = 'puts'
    else:
        legs = 'calls'
    
    # save the underlying price at entry
    underlyingPriceAtEntry = self.Securities[expiryGroupSymbol].Price
    
    # save relevant information in the dictionary allContractsByExpiryGroup
    self.allContractsByExpiryGroup[expiryGroup] = [entryDate, nextExpiryDate, legs, underlyingPriceAtEntry, listContracts, initialContractsValue]
    
    if self.tradingLogs:
        self.Log(expiryGroup + ': entering new option contracts for next period; nextExpiryDate: ' + str(nextExpiryDate))
    
    return True
    
def CalculateAdjustedAnnualBudget(self, daysToRollBeforeExpiration, daysToExpiration):
    
    ''' Get adjusted annual budget (for rolling days and early rebalancing) for entire expiry group '''
    
    rollAdjustment = 365 / (self.expiryDays - daysToRollBeforeExpiration)
    
    if daysToExpiration is not None:
        earlyRebalancingAdjustment = 1 - ((math.ceil(daysToExpiration) - daysToRollBeforeExpiration) / self.expiryDays)
    else:
        earlyRebalancingAdjustment = 1
    
    adjustedAnnualBudget = (self.annualBudget / rollAdjustment) * earlyRebalancingAdjustment
    
    self.Log('adjustedAnnualBudget: ' + str(adjustedAnnualBudget))
    
    return adjustedAnnualBudget
    
def CalculateBudgetOptions(self, expiryGroupSymbol, adjustedAnnualBudget, annualBudgetPercent, remainingContractsValue):
                                    
    ''' Calculate the budget for options '''
    
    budgetOptions = adjustedAnnualBudget * annualBudgetPercent * (self.Portfolio[expiryGroupSymbol].HoldingsValue + self.Portfolio.Cash)
    
    self.Log('underlyingHoldingsValue + Cash: ' + str(self.Portfolio[expiryGroupSymbol].HoldingsValue + self.Portfolio.Cash))
    self.Log('budgetOptions: ' + str(budgetOptions))
    
    if remainingContractsValue is not None:
        budgetOptions = budgetOptions + remainingContractsValue
        self.Log('remainingContractsValue: ' + str(remainingContractsValue))
        self.Log('final budgetOptions: ' + str(budgetOptions))
        self.Log('end of early rebalancing ----------')
    
    # rebalancing underlying to make sure cash and underlying holdings are well balanced
    if self.Portfolio[expiryGroupSymbol].HoldingsValue > 0:
        cashImbalance = self.Portfolio.Cash - budgetOptions
        if cashImbalance < 0:
            shares = round(cashImbalance / self.Securities[expiryGroupSymbol].Price) - 1
        else:
            shares = int(cashImbalance / self.Securities[expiryGroupSymbol].Price)
        
        if self.tradingLogs:
            self.Log('rebalancing underlying due to cash imbalance'
            + '; budgetOptions: ' + str(budgetOptions)
            + '; Cash: ' + str(self.Portfolio.Cash)
            + '; cashImbalance: ' + str(cashImbalance)
            + '; shares: ' + str(shares))
        
        RebalanceUnderlying(self, shares)
        
    self.Plot('Chart Budget', 'budgetOptions (%)', round(budgetOptions / self.Portfolio.TotalPortfolioValue, 4) * 100)
    
    return budgetOptions
    
def CalculateSumProdOptionPrices(self, dictContracts, dictLongs, dictShorts):
    
    ''' calculate the sum product of option prices needed for position sizing system based on number of contracts '''
    
    # sum product of multipliers and prices (we split into longs/shorts to correctly apply AskPrice/BidPrice)
    sumProdLongCalls = sum([value[1] * self.Securities[dictContracts['calls'][key]].AskPrice for key, value in dictLongs['calls'].items()])
    sumProdLongPuts = sum([value[1] * self.Securities[dictContracts['puts'][key]].AskPrice for key, value in dictLongs['puts'].items()])
    sumProdShortCalls = sum([value[1] * self.Securities[dictContracts['calls'][key]].BidPrice for key, value in dictShorts['calls'].items()])
    sumProdShortPuts = sum([value[1] * self.Securities[dictContracts['puts'][key]].BidPrice for key, value in dictShorts['puts'].items()])
    
    sumProdOptionPrices = sumProdLongCalls + sumProdLongPuts + sumProdShortCalls + sumProdShortPuts
    
    return sumProdOptionPrices
    
def CalculateNotionalRatio(self, numberOfContracts, expiryGroupSymbol):
        
    ''' Calculate notional ratio coverage '''

    notionalRatio = 0
    
    notionalCoverage = numberOfContracts * 100
    if expiryGroupSymbol in self.Portfolio.Keys:
        underlyingShares = self.Portfolio[expiryGroupSymbol].Quantity
    else:
        underlyingShares = 0
     
    if underlyingShares > 0:
        notionalRatio = notionalCoverage / underlyingShares
        
    return notionalRatio
    
def LiquidateOptionContracts(self, expiryGroup, openContracts, tag = 'no message'):
    
    ''' Liquidate any open option contracts '''

    # check the validity of the contracts
    validContracts = CheckContractValidity(self, openContracts, expiryGroup)
    if not validContracts:
        return False
        
    if self.tradingLogs:
        openOptionContracts = GetOpenOptionContracts(self)
        self.Log('open option contracts and HoldingsValue before liquidating: '
                + str({self.Securities[contract].Symbol.Value: self.Portfolio[contract].HoldingsValue for contract in openOptionContracts}))
    
    for contract in openContracts:
        if self.Securities[contract].Invested:
            self.Liquidate(contract, 'Liquidated - ' + expiryGroup + ' ' + tag)
            self.RemoveSecurity(contract)
            self.lastMinutePricesDict.pop(contract, None)
    
            if self.tradingLogs:
                self.Log(expiryGroup + '/' + str(contract) + ': liquidating due to ' + tag)
        
    return True

def CheckContractValidity(self, contracts, expiryGroup):
    
    ''' Check the validity of the contracts '''
    
    for contract in contracts:
        contractId = str(self.Securities[contract].Symbol).replace(' ', '')

        # this is to remove specific option contracts above a certain price
        if (contractId in self.avoidContractsWithPrice
        and (self.Securities[contract].AskPrice > self.avoidContractsWithPrice[contractId]
        or self.Securities[contract].BidPrice > self.avoidContractsWithPrice[contractId])):
            if contractId not in self.dataChecksDict['contractAboveLimitPrice']:
                self.dataChecksDict['contractAboveLimitPrice'].update({contractId: [self.Time]})
            else:
                self.dataChecksDict['contractAboveLimitPrice'][contractId].append(self.Time)

            return False
        
        elif self.Securities[contract].AskPrice == 0 or self.Securities[contract].BidPrice == 0:
            if contractId not in self.dataChecksDict['contractPriceZero']:
                self.dataChecksDict['contractPriceZero'].update({contractId: [self.Time]})
            else:
                self.dataChecksDict['contractPriceZero'][contractId].append(self.Time)
                
            self.Plot('Chart Data Checks', 'contractPriceZero', 0)
            
            return False
            
    return True
        
def GetOpenOptionContracts(self):
    
    ''' Get any open option contracts '''

    return [x.Symbol for x in self.ActiveSecurities.Values if x.Invested and x.Type == SecurityType.Option]

def GetTradingContracts(self, expiryGroupSymbol, calendarType, maxExpiryDays, daysToRollBeforeExpiration, dictCalls, dictPuts):
    
    ''' Get the final option contracts to trade '''
    
    # get a list with the option chain for the underlying symbol and the current date
    optionContracts = self.OptionChainProvider.GetOptionContractList(expiryGroupSymbol, self.Time.date())
    if len(optionContracts) == 0:
        if self.Time.date() not in self.dataChecksDict['emptyOptionContracts']:
            self.dataChecksDict['emptyOptionContracts'].update({self.Time.date(): 'emptyOptionContracts'})
            self.Plot('Chart Data Checks', 'emptyOptionContracts', 0)

        return {'calls': {}, 'puts': {}}
    
    strikePercentsForCalls = {key: value[0] for key, value in dictCalls.items()}
    strikePercentsForPuts = {key: value[0] for key, value in dictPuts.items()}
    
    # get calls and puts contracts after filtering for expiry date and strike prices
    calls = FilterOptionContracts(self, optionSide = 'calls', symbol = expiryGroupSymbol, contracts = optionContracts,
                                strikePercents = strikePercentsForCalls, calendarType = calendarType, maxExpiryDays = maxExpiryDays,
                                daysToRollBeforeExpiration = daysToRollBeforeExpiration)
    puts = FilterOptionContracts(self, optionSide = 'puts', symbol = expiryGroupSymbol, contracts = optionContracts,
                                strikePercents = strikePercentsForPuts, calendarType = calendarType, maxExpiryDays = maxExpiryDays,
                                daysToRollBeforeExpiration = daysToRollBeforeExpiration)

    dictContracts = {'calls': calls, 'puts': puts}
        
    return dictContracts

def FilterOptionContracts(self, optionSide, symbol, contracts, strikePercents, calendarType, maxExpiryDays, daysToRollBeforeExpiration):
    
    '''
    Description:
        Filter a list of option contracts using the below arguments
    Args:
        optionSide: Puts/Calls
        symbol: Relevant symbol
        contracts: List of option contracts
        strikePercents: Dictionary with strike percents
        calendarType: monthlies, weeklies or any
        maxExpiryDays: Number of days to find the expiration date of the contracts
    Return:
        A dictionary with the option contract for each strike percent
    '''
    
    if optionSide == 'calls':
        side = 0
    elif optionSide == 'puts':
        side = 1
    else:
        raise ValueError('optionSide parameter has to be either calls or puts!')
    
    # avoid specific contracts before filtering
    contracts = [x for x in contracts if x.Value.replace(' ', '') not in self.avoidContracts 
                                        and x.Value.replace(' ', '')[:7] not in self.avoidContracts
                                        and x.Value.replace(' ', '')[:9] not in self.avoidContracts
                                        and x.Value.replace(' ', '')[:10] not in self.avoidContracts
                                        and x.ID.OptionRight == side]
    
    # fitler the contracts with expiry date below maxExpiryDays
    if calendarType == 'monthlies':
        contractList = [i for i in contracts if (OptionSymbol.IsStandardContract(i) and (i.ID.Date.date() - self.Time.date()).days <= maxExpiryDays
                                                and (i.ID.Date.date() - self.Time.date()).days > daysToRollBeforeExpiration)]
    elif calendarType == 'weeklies':
        contractList = [i for i in contracts if (OptionSymbol.IsWeekly(i) and (i.ID.Date.date() - self.Time.date()).days <= maxExpiryDays
                                                and (i.ID.Date.date() - self.Time.date()).days > daysToRollBeforeExpiration)]
    elif calendarType == 'any':
        contractList = [i for i in contracts if (i.ID.Date.date() - self.Time.date()).days <= maxExpiryDays]
    else:
        raise ValueError('calendarType must be either monthlies, weeklies or any')
        
    # get the furthest expiration contracts
    furthestExpiryDate = max([i.ID.Date for i in contractList])
    furthestContracts = [i for i in contractList if i.ID.Date == furthestExpiryDate]
    
    # find the strike price for ATM options
    atmStrike = sorted(furthestContracts, key = lambda x: abs(x.ID.StrikePrice - self.Securities[symbol].Price))[0].ID.StrikePrice
    
    # create a list of all possible strike prices
    strikesList = sorted(set([i.ID.StrikePrice for i in furthestContracts]))
    
    # find strikes
    strikePrices = {}
    # loop through strikePercents and create a new dictionary strikePrices with the strikeGroup and the strikePrice
    for strikeGroup, strikePercent in strikePercents.items():
        objectiveStrike = atmStrike * (1 + strikePercent)
        if strikePercent <= 0:
            strikePrices[strikeGroup] = min([x for x in strikesList if x >= objectiveStrike and x <= atmStrike])
        else:
            strikePrices[strikeGroup] = max([x for x in strikesList if x >= atmStrike and x <= objectiveStrike])
            
    # find the contracts
    strikeContracts = {}
    # loop through strikePrices and create a new dictionary strikeContracts with the strikeGroup and the strikeContract
    for strikeGroup, strikePrice in strikePrices.items():
        strikeContracts[strikeGroup] = [i for i in furthestContracts if i.ID.StrikePrice == strikePrice][0]
        
        # check if the final strike deviates too much from our strikePriceTarget
        contractId = strikeContracts[strikeGroup].Value.replace(' ', '')
        strikePriceTarget = atmStrike * (1 + strikePercents[strikeGroup])
        if contractId not in self.dataChecksDict['strikePriceTargetDeviation']:
            strikePriceTargetDeviation = abs((strikePrice / strikePriceTarget) - 1) * 100
            if strikePriceTargetDeviation > self.strikePriceTargetDeviationCheck:
                self.dataChecksDict['strikePriceTargetDeviation'].update({contractId: [strikePriceTarget, strikePrice]})
            self.Plot('Chart Data Checks', 'strikePriceTargetDeviation (%)', strikePriceTargetDeviation)
        
        # check if the final expiry days deviates too much from our expiryDaysTarget
        if contractId not in self.dataChecksDict['expiryDaysTargetDeviation']:
            base = 30
            expiryDaysTarget = base * round(maxExpiryDays / base)
            expiryDays = (strikeContracts[strikeGroup].ID.Date.date() - self.Time.date()).days
            expiryDaysTargetDeviation = abs(expiryDaysTarget - expiryDays)
            if expiryDaysTargetDeviation > self.expiryDaysTargetDeviationCheck:
                self.dataChecksDict['expiryDaysTargetDeviation'].update({contractId: [expiryDaysTarget, expiryDays]})
            self.Plot('Chart Data Checks', 'expiryDaysTargetDeviation (Days)', expiryDaysTargetDeviation)
    
    if strikeContracts:
        self.expiryDays = (furthestExpiryDate.date() - self.Time.date()).days
    
    return strikeContracts
    
def UpdateBenchmarkValue(self):
        
    ''' Simulate buy and hold the Benchmark '''
    
    if self.initBenchmarkPrice == 0:
        self.initBenchmarkCash = self.Portfolio.Cash
        self.initBenchmarkPrice = self.Benchmark.Evaluate(self.Time)
        self.benchmarkValue = self.initBenchmarkCash
    else:
        currentBenchmarkPrice = self.Benchmark.Evaluate(self.Time)
        self.benchmarkValue = (currentBenchmarkPrice / self.initBenchmarkPrice) * self.initBenchmarkCash
        
def UpdatePortfolioGreeks(self, slice):
    
    ''' Calculate the Greeks per contract and return the current Portfolio Greeks  '''
    
    portfolioGreeks = {}
    
    # loop through the option chains
    for i in slice.OptionChains:
        chain = i.Value
        contracts = [x for x in chain]
        
        if len(contracts) == 0:
            continue

        # get the portfolio greeks
        portfolioDelta = sum(x.Greeks.Delta * self.Portfolio[x.Symbol].Quantity for x in contracts) * 100
        portfoliGamma = sum(x.Greeks.Gamma * self.Portfolio[x.Symbol].Quantity for x in contracts) * 100
        portfolioVega = sum(x.Greeks.Vega * self.Portfolio[x.Symbol].Quantity for x in contracts) * 100
        portfolioRho = sum(x.Greeks.Rho * self.Portfolio[x.Symbol].Quantity for x in contracts) * 100
        portfolioTheta = sum(x.Greeks.Theta * self.Portfolio[x.Symbol].Quantity for x in contracts) * 100
        
        portfolioGreeks = {'Delta': portfolioDelta, 'Gamma': portfoliGamma,
                            'Vega': portfolioVega, 'Rho': portfolioRho, 'Theta': portfolioTheta}
                            
    return portfolioGreeks
    
def CheckData(self, contracts):
    
    ''' Check for erroneous data '''
    
    for contract in contracts:
        # get current bid and ask prices
        currentPrice = self.Securities[contract].Price
        currentVolume = self.Securities[contract].Volume
        currentBidPrice = self.Securities[contract].BidPrice
        currentAskPrice = self.Securities[contract].AskPrice
        
        # add bid and ask prices or retrieve the last ones if we already have them
        if contract not in self.lastMinutePricesDict:
            self.lastMinutePricesDict[contract] = [currentPrice, currentBidPrice, currentAskPrice]
            continue
        
        else:
            lastPrice = self.lastMinutePricesDict[contract][0]
            lastBidPrice = self.lastMinutePricesDict[contract][1]
            lastAskPrice = self.lastMinutePricesDict[contract][2]
            
            # update prices
            self.lastMinutePricesDict[contract] = [currentPrice, currentBidPrice, currentAskPrice]
        
        # get the percent change for both bid and ask prices
        pctChangeBid = ((currentBidPrice / lastBidPrice) - 1) * 100
        pctChangeAsk = ((currentAskPrice / lastAskPrice) - 1) * 100
        
        # store extreme price changes
        if abs(pctChangeBid) > self.extremePriceChangeCheck or abs(pctChangeAsk) > self.extremePriceChangeCheck:
            contractId = str(self.Securities[contract].Symbol).replace(' ', '')
            
            self.Log('contractId: ' + str(contractId)
            + '; currentPrice: ' + str(currentPrice) + '; lastPrice: ' + str(lastPrice) + '; currentVolume: ' + str(currentVolume)
            + '; currentBidPrice: ' + str(currentBidPrice) + '; lastBidPrice: ' + str(lastBidPrice)
            + '; currentAskPrice: ' + str(currentAskPrice) + '; lastAskPrice: ' + str(lastAskPrice))

            if contractId not in self.dataChecksDict['extremePriceChange']:
                self.dataChecksDict['extremePriceChange'].update({contractId: [self.Time]})
            else:
                self.dataChecksDict['extremePriceChange'][contractId].append(self.Time)
            
            maxPctChange = pctChangeBid if abs(pctChangeBid) > abs(pctChangeAsk) else pctChangeAsk
            self.Plot('Chart Data Checks', 'extremePriceChange (%)', maxPctChange)

def CustomSecurityInitializer(self, security):
    
    '''
    Description:
        Initialize the security with different models
    Args:
        security: Security which characteristics we want to change'''
    
    security.SetMarketPrice(self.GetLastKnownPrice(security))
    security.SetDataNormalizationMode(DataNormalizationMode.Raw)
    security.SetLeverage(self.leverage)

    if security.Type == SecurityType.Equity:
        if self.constantFeeEquities is not None:
            # constant fee model that takes a dollar amount parameter to apply to each order
            security.SetFeeModel(CustomFeeModel(self.constantFeeEquities))
        if self.constantSlippagePercentEquities is not None:
            # constant slippage model that takes a percentage parameter to apply to each order value
            security.SetSlippageModel(CustomSlippageModel(self.constantSlippagePercentEquities))
            
    elif security.Type == SecurityType.Option:
        if self.constantFeeOptions is not None:
            # constant fee model that takes a dollar amount parameter to apply to each order
            security.SetFeeModel(CustomFeeModel(self.constantFeeOptions))
        if self.constantSlippagePercentOptions is not None:
            # constant slippage model that takes a percentage parameter to apply to each order value
            security.SetSlippageModel(CustomSlippageModel(self.constantSlippagePercentOptions))

class CustomFeeModel:
    
    ''' Custom implementation of the Fee Model '''
    
    def __init__(self, multiple):
        self.multiple = multiple
    
    def GetOrderFee(self, parameters):
        
        ''' Get the fee for the order '''
        
        absQuantity = parameters.Order.AbsoluteQuantity
        fee = max(1, absQuantity * self.multiple)
        
        return OrderFee(CashAmount(fee, 'USD'))
        
class CustomSlippageModel:
    
    ''' Custom implementation of the Slippage Model '''
        
    def __init__(self, multiple):
        self.multiple = multiple

    def GetSlippageApproximation(self, asset, order):
        
        ''' Apply slippage calculation to order price '''
        
        quantity = order.Quantity
        price = [asset.AskPrice if quantity > 0 else asset.BidPrice][0]
        
        slippage = price * self.multiple
        
        return slippage
### 2020_08_02 v36
### ----------------------------------------------------------------------------
# Added Chart Budget plot
# Improved the budget calculation to add remaining contracts value if below initial value
### ----------------------------------------------------------------------------

from datetime import timedelta
from HelperFunctions import *
import pandas as pd
from System.Drawing import Color

class OptionsStrategyTemplateAlgorithm(QCAlgorithm):

    def Initialize(self):
        
        ''' Initialization at beginning of backtest '''
        
        ### user-defined inputs ---------------------------------------------------------------------------------------------------
        
        # didn't have full list of options available for spy before 7/1/10...verified EEM options available from 7/1/10 so ok there
        # weeklies seem to start for SPY in 01/16
        self.SetStartDate(2007, 1, 1) #20090301
        # just comment out end date to run through today
        self.SetEndDate(2020, 7, 31) #20100301
        self.SetCash(1000000)
        
        # select a ticker as benchmark (will plot Buy&Hold of this benchmark)
        self.benchmarkTicker = 'SPY'
    
        # select ticker for underlying asset (holdings of this asset will be 100% of remaining cash not used for options)
        underlyingTicker = 'SPY'
        
        # dictionary of dictionaries containing the different groups of option legs by expiry date
        # the format of the strikes is [strike percent, annualBudgetPercent]
        self.dictParameters = {'UnderlyingSynthetic': {'activate': False,
                                                        'ticker': 'SPY',
                                                        'calendarType': 'monthlies', # options are 'monthlies' (only), 'weeklies' (only) and 'any'
                                                        'positionSizing': 'multiplier', # options are 'multiplier' and 'dollar'
                                                        'maxExpiryDays': 10,
                                                        'rollMaxExpiryDays': 10,
                                                        'daysToRollBeforeExpiration': 1,
                                                        'underlyingPriceDownMoveLiquidate': -0.9, # applied to calls
                                                        'underlyingPriceUpMoveLiquidate': 0.9, # applied to puts
                                                        'underlyingPriceLowerBoundSidewaysLiquidate': -0.01, # applied to calls/puts
                                                        'underlyingPriceUpperBoundSidewaysLiquidate': 0.01, # applied to calls/puts
                                                        'underlyingPriceDaysSidewaysLiquidate': 5, # number of days underlying price within lower/upper bound
                                                        'calls': {'strikePercentA': [0.01, -1], 'strikePercentB': [0.15, None],
                                                                'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                                        'puts': {'strikePercentA': [-0.15, None], 'strikePercentB': [-0.01, 1]},
                                                                'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                
                               'ExpiryGroupA': {'activate': True,
                                                'ticker': 'SPY',
                                                'calendarType': 'monthlies', # options are 'monthlies' (only), 'weeklies' (only) and 'any'
                                                'positionSizing': 'dollar', # options are 'multiplier' and 'dollar'
                                                'maxExpiryDays': 70,
                                                'rollMaxExpiryDays': 70,
                                                'daysToRollBeforeExpiration': 30,
                                                'underlyingPriceDownMoveLiquidate': -0.9, # applied to calls
                                                'underlyingPriceUpMoveLiquidate': 0.9, # applied to puts (0.075)
                                                'underlyingPriceLowerBoundSidewaysLiquidate': 0.0, # applied to calls/puts
                                                'underlyingPriceUpperBoundSidewaysLiquidate': 0.9, # applied to calls/puts
                                                'underlyingPriceDaysSidewaysLiquidate': 90000, # number of days underlying price within lower/upper bound
                                                'calls': {'strikePercentA': [0.2, None], 'strikePercentB': [-0.1, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                                'puts': {'strikePercentA': [-0.35, .4], 'strikePercentB': [-0.2, None],
                                                        'strikePercentC': [-0.225, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]}},
            
                                'ExpiryGroupB': {'activate': True,
                                                'ticker': 'SPY',
                                                'calendarType': 'monthlies', # options are 'monthlies' (only), 'weeklies' (only) and 'any'
                                                'positionSizing': 'dollar', # options are 'multiplier' and 'dollar'
                                                'maxExpiryDays': 130,
                                                'rollMaxExpiryDays': 130,
                                                'daysToRollBeforeExpiration': 30,
                                                'underlyingPriceDownMoveLiquidate': -0.9, # applied to calls
                                                'underlyingPriceUpMoveLiquidate': 0.9, # applied to puts (0.075)
                                                'underlyingPriceLowerBoundSidewaysLiquidate': 0.05, # applied to calls/puts
                                                'underlyingPriceUpperBoundSidewaysLiquidate': 0.9, # applied to calls/puts
                                                'underlyingPriceDaysSidewaysLiquidate': 30, # number of days underlying price within lower/upper bound
                                                'calls': {'strikePercentA': [0.3, None], 'strikePercentB': [-0.05, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                                'puts': {'strikePercentA': [-0.35, .6], 'strikePercentB': [-0.3, None],
                                                        'strikePercentC': [-0.225, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]}},
                  
                                'ExpiryGroupC': {'activate': False,
                                                'ticker': 'SPY',
                                                'calendarType': 'monthlies', # options are 'monthlies' (only), 'weeklies' (only) and 'any'
                                                'positionSizing': 'dollar', # options are 'multiplier' and 'dollar'
                                                'maxExpiryDays':70,
                                                'rollMaxExpiryDays': 70,
                                                'daysToRollBeforeExpiration': 30,
                                                'underlyingPriceDownMoveLiquidate': -0.9, # applied to calls
                                                'underlyingPriceUpMoveLiquidate': 0.9, # applied to puts
                                                'underlyingPriceLowerBoundSidewaysLiquidate': 0.0, # applied to calls/puts
                                                'underlyingPriceUpperBoundSidewaysLiquidate': 0.9, # applied to calls/puts
                                                'underlyingPriceDaysSidewaysLiquidate': 3000, # number of days underlying price within lower/upper bound
                                                'calls': {'strikePercentA': [0.15, None], 'strikePercentB': [0.15, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                                'puts': {'strikePercentA': [-0.35, 1], 'strikePercentB': [-0.45, None],
                                                        'strikePercentC': [-0.225, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]}},
            
                                'ExpiryGroupD': {'activate': False,
                                                'ticker': 'SPY',
                                                'calendarType': 'monthlies', # options are 'monthlies' (only), 'weeklies' (only) and 'any'
                                                'positionSizing': 'dollar', # options are 'multiplier' and 'dollar'
                                                'maxExpiryDays': 730,
                                                'rollMaxExpiryDays': 730,
                                                'daysToRollBeforeExpiration': 1,
                                                'underlyingPriceDownMoveLiquidate': -0.9, # applied to calls
                                                'underlyingPriceUpMoveLiquidate': 0.9, # applied to puts
                                                'underlyingPriceLowerBoundSidewaysLiquidate': -0.9, # applied to calls/puts
                                                'underlyingPriceUpperBoundSidewaysLiquidate': 0.0, # applied to calls/puts
                                                'underlyingPriceDaysSidewaysLiquidate': 360, # number of days underlying price within lower/upper bound
                                                'calls': {'strikePercentA': [0.4, 1], 'strikePercentB': [0.15, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                                'puts': {'strikePercentA': [-0.35, None], 'strikePercentB': [-0.45, None],
                                                        'strikePercentC': [-0.225, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]}},
                                
                                'ExpiryGroupE': {'activate': False,
                                                'ticker': 'SPY',
                                                'calendarType': 'monthlies', # options are 'monthlies' (only), 'weeklies' (only) and 'any'
                                                'positionSizing': 'dollar', # options are 'multiplier' and 'dollar'
                                                'maxExpiryDays': 370,
                                                'rollMaxExpiryDays': 370,
                                                'daysToRollBeforeExpiration': 1,
                                                'underlyingPriceDownMoveLiquidate': -0.9, # applied to calls
                                                'underlyingPriceUpMoveLiquidate': 0.9, # applied to puts
                                                'underlyingPriceLowerBoundSidewaysLiquidate': -0.9, # applied to calls/puts
                                                'underlyingPriceUpperBoundSidewaysLiquidate': 0.0, # applied to calls/puts
                                                'underlyingPriceDaysSidewaysLiquidate': 180, # number of days underlying price within lower/upper bound
                                                'calls': {'strikePercentA': [0.2, 1], 'strikePercentB': [0.25, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                                'puts': {'strikePercentA': [-0.45, None], 'strikePercentB': [0.15, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]}},
            
                                'ExpiryGroupF': {'activate': False,
                                                'ticker': 'Spy',
                                                'calendarType': 'monthlies', # options are 'monthlies' (only), 'weeklies' (only) and 'any'
                                                'positionSizing': 'multiplier', # options are 'multiplier' and 'dollar'
                                                'maxExpiryDays': 550,
                                                'rollMaxExpiryDays': 730,
                                                'daysToRollBeforeExpiration': 1,
                                                'underlyingPriceDownMoveLiquidate': -.25, # applied to calls
                                                'underlyingPriceUpMoveLiquidate': 100, # applied to puts
                                                'underlyingPriceLowerBoundSidewaysLiquidate': -0.1, # applied to calls/puts
                                                'underlyingPriceUpperBoundSidewaysLiquidate': 0.1, # applied to calls/puts
                                                'underlyingPriceDaysSidewaysLiquidate': 18000, # number of days underlying price within lower/upper bound
                                                'calls': {'strikePercentA': [0.3, .33], 'strikePercentB': [0.15, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]},
                                                'puts': {'strikePercentA': [-0.5, None], 'strikePercentB': [0.15, None],
                                                        'strikePercentC': [0.05, None], 'strikePercentD': [0.15, None], 'strikePercentE': [0.15, None]}}}
                                                           
        # take annual budget and split it evenly between all expiry groups and spreads budget evenly across all contracts
        # in a one year horizon (accounts for rollMaxExpiryDays in each group)...trades account for multipliers at end too
        self.annualBudget = 0.02
        
        # minimum notional ratio allowed to enter new contracts
        self.minNotionalRatio = 0
        
        # overwrite the default model for fees
        # - Default: Set to None to use the default IB Tiered Model for both stocks and options from here https://www.interactivebrokers.com/en/index.php?f=1590&p=options1
        #    --- FYI for low number of stocks the default fee comes out to .005 (presumably dominated by the .0035 IB commission at low number of shares)
        #    --- FYI for low number of options contracts at hefty premiums the default fee comes out to .25...don't understand that yet since commission alone looks to be 0.65
        # - Custom Constant Fee: Provide a dollar amount to apply to each order quantity ($ per share for stock and $ per contract for options)
        self.constantFeeEquities = None
        self.constantFeeOptions = None
        
        # overwrite the default model for slippage
        # - Default: Set to None to use the default slippage model which uses 0% slippage
        # - Custom Constant Slippage: Provide a % (in the form of a decimal ranged 0 to 1) to apply to each order value
        self.constantSlippagePercentEquities = None
        self.constantSlippagePercentOptions = None
        
        # data checks and logs:
        # variable to turn on/off trading logs
        self.tradingLogs = False
        # variable to avoid specific option contracts whose price is above a certain level
        self.avoidContractsWithPrice = {'SPY160916C00290000': 50, 'SPY170120C00290000': 50} # format: 'SPY150821P00181000': 55, 'SPY150918C00250000': 55, 'SPY150918P00130000': 55
        # current put avoidance list: ['SPY1509', 'SPY1508', 'SPY1009']
        self.avoidContracts = ['SPY1508', 'SPY1509', 'SPY101218C', 'SPY100918C','SPY110319C'] # formats: 'SPY150918C00240000', 'SPY1012', 'SPY100918', 'SPY100918C'
        # check for extreme changes in minute price to report
        self.extremePriceChangeCheck = 50000 # percentage (e.g. 10 for 10%)
        # check for large deviations between our target strike price and final strike price selected
        self.strikePriceTargetDeviationCheck = 10 # percentage (e.g. 10 for 10%)
        # check for large deviations between our target expiry days and final expiry days selected
        self.expiryDaysTargetDeviationCheck = 10 # difference in number of days between expiry days target and selected
        
        # variable to enable/disable assignments before expiration
        # when set to True, the order from assignments will be cancelled until intended liquidation date
        # when set to False, the assignment is avoided and then all option contracts are immediately liquidated
        self.avoidAssignment = True
        
        # set leverage
        self.leverage = 1000000
        
        ### -------------------------------------------------------------------------------------------------------------------------
        
        # apply CustomSecurityInitializer
        self.SetSecurityInitializer(lambda x: CustomSecurityInitializer(self, x))
        
        # add benchmark
        self.SetBenchmark(self.benchmarkTicker)
        
        # add underlying asset
        equity = self.AddEquity(underlyingTicker, Resolution.Minute)
        equity.VolatilityModel = StandardDeviationOfReturnsVolatilityModel(30)
        self.underlyingSymbol = equity.Symbol
        
        # add more underlying assets if needed
        self.expiryGroupSymbols = {}
        for expiryGroup, parameters in self.dictParameters.items():
            if parameters['activate']:
                ticker = parameters['ticker']
                if ticker != underlyingTicker:
                    self.expiryGroupSymbols[expiryGroup] = self.AddEquity(ticker, Resolution.Minute).Symbol
                else:
                    self.expiryGroupSymbols[expiryGroup] = self.underlyingSymbol
        
        # get numner of active expiry groups
        self.numberOfActiveExpiryGroups = sum(parameters['activate'] for expiryGroup, parameters in self.dictParameters.items())
        
        # create dictionary with expiry groups belonging to the same rollMaxExpiryDays
        rollMaxExpiryDays = [parameters['rollMaxExpiryDays'] for expiryGroup, parameters in self.dictParameters.items() if parameters['activate']]
        self.sameRollMaxExpiryDaysExpiryGroups = {str(elem): [] for elem in rollMaxExpiryDays}
        for expiryGroup, parameters in self.dictParameters.items():
            if parameters['activate']:
                rollMaxExpiryDays = parameters['rollMaxExpiryDays']
                self.sameRollMaxExpiryDaysExpiryGroups[str(rollMaxExpiryDays)].append(expiryGroup)
                
        # plot the Portfolio Greeks
        #portfolioGreeksPlot = Chart('Chart Portfolio Greeks')
        #portfolioGreeksPlot.AddSeries(Series('Daily Portfolio Delta', SeriesType.Line, ''))
        #portfolioGreeksPlot.AddSeries(Series('Daily Portfolio Gamma', SeriesType.Line, ''))
        #portfolioGreeksPlot.AddSeries(Series('Daily Portfolio Vega', SeriesType.Line, ''))
        #portfolioGreeksPlot.AddSeries(Series('Daily Portfolio Rho', SeriesType.Line, ''))
        #portfolioGreeksPlot.AddSeries(Series('Daily Portfolio Theta', SeriesType.Line, ''))
        #self.AddChart(portfolioGreeksPlot)
        
        # plot data checks
        dataChecksPlot = Chart('Chart Data Checks')
        dataChecksPlot.AddSeries(Series('extremePriceChange (%)', SeriesType.Line, '%'))
        dataChecksPlot.AddSeries(Series('strikePriceTargetDeviation (%)', SeriesType.Line, '%'))
        dataChecksPlot.AddSeries(Series('expiryDaysTargetDeviation (Days)', SeriesType.Line))
        dataChecksPlot.AddSeries(Series('contractPriceZero', SeriesType.Scatter))
        dataChecksPlot.AddSeries(Series('emptyOptionContracts', SeriesType.Scatter))
        self.AddChart(dataChecksPlot)
        
        # plot budget
        budgetPlot = Chart('Chart Budget')
        budgetPlot.AddSeries(Series('budgetOptions (%)', SeriesType.Line, '%'))
        self.AddChart(budgetPlot)
        
        # plot notional
        notionalPlot = Chart('Chart Notional')
        self.AddChart(notionalPlot)
        
        # self.Portfolio.MarginCallModel = MarginCallModel.Null
        self.SetWarmup(30, Resolution.Daily)
        self.allContractsByExpiryGroup = {}
        self.dailyPortfolioGreeksDict = {}
        self.lastMinutePricesDict = {}
        self.dataChecksDict = {'extremePriceChange': {}, 'strikePriceTargetDeviation': {},
                                'expiryDaysTargetDeviation': {}, 'contractAboveLimitPrice': {},
                                'contractPriceZero': {}, 'emptyOptionContracts': {}}
        self.dataCheckPrinted = False
        self.assignedOption = False
        self.initBenchmarkPrice = 0
        self.rebalanceUnderlying = False
        self.specialTag = ''
        self.day = 0
        
    def OnData(self, data):
        
        ''' Event triggering every time there is new data '''
        
        # print data checks at the end of the backtest
        if self.Time.date() >= (self.EndDate.date() - timedelta(2)) and not self.dataCheckPrinted:
            self.Log(self.dataChecksDict)
            self.dataCheckPrinted = True

        if self.Time.day != self.day:
            self.checkNextDay = False
            
            # simulate buy and hold the benchmark and plot its daily value --------------------------------------
            UpdateBenchmarkValue(self)
            self.Plot('Strategy Equity', self.benchmarkTicker, self.benchmarkValue)
            
            # update the Portfolio Greeks dictionary ------------------------------------------------------------
            #todayPortfolioGreeks = UpdatePortfolioGreeks(self, data)
            
            #if todayPortfolioGreeks:
            #    for greek, value in todayPortfolioGreeks.items():
            #        self.Plot('Chart Portfolio Greeks', 'Daily Portfolio ' + greek, value)
                
            self.day = self.Time.day
        
        # check if we got assigned and liquidate all remaining legs --------------------------------------------
        if self.assignedOption:
            # close all option contracts at once
            openOptionContracts = GetOpenOptionContracts(self)
            for contract in openOptionContracts:
                self.Liquidate(contract, 'Liquidated - option assignment')
                self.RemoveSecurity(contract)
                
            self.assignedOption = False
        
        # get a list with open option contracts ------------------------------------------------------------------
        openOptionContracts = GetOpenOptionContracts(self)
        
        # check on strange data ----------------------------------------------------------------------------------
        try:
            CheckData(self, openOptionContracts)
        except BaseException as e:
            if self.tradingLogs:
                self.Log('CheckData function failed due to: ' + str(e))
        
        # run below code only during this hour (halved bt time from 16 mins to 8 mins) ---------------------------
        if not self.Time.hour == 9:
            return

        # empty list to store expiry groups to restart due to underlying price move
        expiryGroupsToRestartList = []
        
        # enter first contracts -----------------------------------------------------------------------------------
        
        for expiryGroup, parameters in self.dictParameters.items():
            if expiryGroup not in self.allContractsByExpiryGroup.keys() and parameters['activate']:
                enterContractsWorked = EnterOptionContracts(self, expiryGroup, self.expiryGroupSymbols[expiryGroup],
                                                            parameters['calendarType'], parameters['positionSizing'],
                                                            parameters['maxExpiryDays'], parameters['daysToRollBeforeExpiration'],
                                                            parameters['calls'], parameters['puts'])
                
                if not enterContractsWorked:
                    continue
                
                self.rebalanceUnderlying = True
                                        
        # rebalance holdings of underlying asset ------------------------------------------------------------------
        if self.rebalanceUnderlying and not self.dictParameters['UnderlyingSynthetic']['activate']:
            RebalanceUnderlying(self)
            self.rebalanceUnderlying = False
        
        # liquidate contracts about to expire/due to underlying price move ----------------------------------------
        for expiryGroup, parameters in self.allContractsByExpiryGroup.items():
             
            # skip expiryGroup that is already in expiryGroupsToRestartList
            if expiryGroup in expiryGroupsToRestartList:
                continue
            
            # get inputs --------------------
            entryDate = parameters[0]
            
            nextExpiryDate = parameters[1]
            daysToExpiration = (nextExpiryDate - self.Time).days
            daysToRollBeforeExpiration = self.dictParameters[expiryGroup]['daysToRollBeforeExpiration']
            
            legs = parameters[2]
            underlyingPriceAtEntry = parameters[3]
            contracts = parameters[4]
            
            underlyingSymbol = self.expiryGroupSymbols[expiryGroup]
            underlyingPriceLowerBoundSidewaysLiquidate = self.dictParameters[expiryGroup]['underlyingPriceLowerBoundSidewaysLiquidate']
            underlyingPriceUpperBoundSidewaysLiquidate = self.dictParameters[expiryGroup]['underlyingPriceUpperBoundSidewaysLiquidate']
            underlyingPriceDaysSidewaysLiquidate = self.dictParameters[expiryGroup]['underlyingPriceDaysSidewaysLiquidate']
            
            # check where underlying price vs underlyingPriceAtEntry
            # and liquidate if beyond/within threshold ----------------------------
            underlyingPriceMoveLiquidate = False
            underlyingCurrentPrice = self.Securities[underlyingSymbol].Price
            underlyingPriceMove = (underlyingCurrentPrice / underlyingPriceAtEntry) - 1
            if legs == 'calls':
                if underlyingPriceMove < self.dictParameters[expiryGroup]['underlyingPriceDownMoveLiquidate']:
                    underlyingPriceMoveLiquidate = True
            elif legs == 'puts':
                if underlyingPriceMove > self.dictParameters[expiryGroup]['underlyingPriceUpMoveLiquidate']:
                    underlyingPriceMoveLiquidate = True
            else:
                if (underlyingPriceMove < self.dictParameters[expiryGroup]['underlyingPriceDownMoveLiquidate']
                or underlyingPriceMove > self.dictParameters[expiryGroup]['underlyingPriceUpMoveLiquidate']):
                    underlyingPriceMoveLiquidate = True
                    
            if (self.Time - entryDate) >= timedelta(underlyingPriceDaysSidewaysLiquidate):
                if underlyingPriceLowerBoundSidewaysLiquidate < underlyingPriceMove < underlyingPriceUpperBoundSidewaysLiquidate:
                    underlyingPriceMoveLiquidate = True
            
            if underlyingPriceMoveLiquidate:
                rollMaxExpiryDays = self.dictParameters[expiryGroup]['rollMaxExpiryDays']
                expiryGroupsToRestartList.extend( self.sameRollMaxExpiryDaysExpiryGroups[str(rollMaxExpiryDays)] )
                self.tag = ('(' + expiryGroup + ' underlyingPriceMoveLiquidate rule triggered; underlying price moved '
                            + '{:.4%}'.format(underlyingPriceMove))
                
                if self.tradingLogs:
                    self.Log(expiryGroup
                    + ': liquidating all option contracts with the same rollMaxExpiryDays due to underlying price move rule'
                    + '; underlyingPriceAtEntry was ' + str(underlyingPriceAtEntry) + '; underlyingCurrentPrice is ' + str(underlyingCurrentPrice))
            
            # check for expiration ---------------------------------------------
            elif daysToExpiration < daysToRollBeforeExpiration:
                # static rebalancing, we add the remaining contracts value to the budget if below initial value
                remainingContractsValue = sum([self.Portfolio[contract].AbsoluteHoldingsValue for contract in contracts])
                initialContractsValue = parameters[5]
                if remainingContractsValue > (initialContractsValue * 0.75):
                    remainingContractsValue = 0
                
                # liquidating expired contracts ------------------------
                liquidationWorked = LiquidateOptionContracts(self, expiryGroup, contracts, 'contract expiration')
                
                if not liquidationWorked:
                    continue

                # roll over expired contracts --------------------------
                parameters = self.dictParameters[expiryGroup]
                
                self.Log('start of static early rebalancing ----------')
                for contract in contracts:
                    contractId = str(self.Securities[contract].Symbol).replace(' ', '')
                    lastPrice = self.Securities[contract].Price
                    bidPrice = self.Securities[contract].BidPrice
                    askPrice = self.Securities[contract].AskPrice
                    self.Log(str(contractId) + '; lastPrice: ' + str(lastPrice) + '; bidPrice: ' + str(bidPrice) + '; askPrice: ' + str(askPrice))
                        
                enterContractsWorked = EnterOptionContracts(self, expiryGroup, self.expiryGroupSymbols[expiryGroup],
                                                            parameters['calendarType'], parameters['positionSizing'],
                                                            parameters['rollMaxExpiryDays'], parameters['daysToRollBeforeExpiration'],
                                                            parameters['calls'], parameters['puts'], remainingContractsValue = remainingContractsValue)
                                                            
                if not enterContractsWorked:
                    continue
        
        # restart the entire expiry group due to underlying price deviation ------------------------------------------
        if len(expiryGroupsToRestartList) > 0:
            for expiryGroup, parameters in self.allContractsByExpiryGroup.items():
                if expiryGroup in expiryGroupsToRestartList:
                    nextExpiryDate = parameters[1]
                    daysToExpiration = (nextExpiryDate - self.Time).days
                    
                    # dynamic rebalancing, we add the remaining contracts value to the budget if below initial value
                    contracts = parameters[4]
                    remainingContractsValue = sum([self.Portfolio[contract].AbsoluteHoldingsValue for contract in contracts])
                    initialContractsValue = parameters[5]
                    if remainingContractsValue > (initialContractsValue * 0.75):
                        remainingContractsValue = 0
                    
                    self.Log('start of dynamic early rebalancing ----------')
                    for contract in contracts:
                        contractId = str(self.Securities[contract].Symbol).replace(' ', '')
                        lastPrice = self.Securities[contract].Price
                        bidPrice = self.Securities[contract].BidPrice
                        askPrice = self.Securities[contract].AskPrice
                        self.Log(str(contractId) + '; lastPrice: ' + str(lastPrice) + '; bidPrice: ' + str(bidPrice) + '; askPrice: ' + str(askPrice))
                    
                    # liquidating expired contracts ----------------------------
                    liquidationWorked = LiquidateOptionContracts(self, expiryGroup, contracts, self.tag)
                    
                    if not liquidationWorked:
                        continue
                    
                     # roll over contracts -------------------------------------
                    parameters = self.dictParameters[expiryGroup]
                    enterContractsWorked = EnterOptionContracts(self, expiryGroup, self.expiryGroupSymbols[expiryGroup],
                                                                parameters['calendarType'], parameters['positionSizing'],
                                                                parameters['maxExpiryDays'], parameters['daysToRollBeforeExpiration'],
                                                                parameters['calls'], parameters['puts'], daysToExpiration, remainingContractsValue)
                    
                    if not enterContractsWorked:
                        continue

                    expiryGroupsToRestartList.remove(expiryGroup)
                
    def OnOrderEvent(self, orderEvent):
        
        ''' Check if the order is a Simulated Option Assignment Before Expiration and act accordingly '''
        
        ticket = self.Transactions.GetOrderTicket(orderEvent.OrderId)
        if ticket.OrderType == OrderType.OptionExercise:
            if ticket.Tag == 'Simulated option assignment before expiration':
                if self.avoidAssignment:
                    ticket.Cancel()
                else:
                    # set assignedOption to True in order to trigger the OnData event to LiquidateOptionContracts
                    self.assignedOption = True
        
            if ticket.Tag ==  'Automatic option exercise on expiration - Adjusting(or removing) the exercised/assigned option':
                self.assignedOption = True