Overall Statistics
Total Trades
2165
Average Win
1.12%
Average Loss
-0.58%
Compounding Annual Return
19.509%
Drawdown
48.600%
Expectancy
0.683
Net Profit
5110.069%
Sharpe Ratio
0.781
Probabilistic Sharpe Ratio
6.110%
Loss Rate
42%
Win Rate
58%
Profit-Loss Ratio
1.92
Alpha
0.096
Beta
0.92
Annual Standard Deviation
0.196
Annual Variance
0.038
Information Ratio
0.708
Tracking Error
0.129
Treynor Ratio
0.166
Total Fees
$464072.17
Estimated Strategy Capacity
$43000.00
Lowest Capacity Asset
LUB R735QTJ8XC9X


class ConstantEtfAlphaModel(AlphaModel):
     # Constant Alpha Model for ETFs
    
    def __init__(self, etfTickers):
        self.Name = 'ETF'
        self.etfSymbols = [Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in etfTickers]
        self.nextUpdateTime = datetime.min
    
    
    def Update(self, algorithm, data):
        insights = []
        if algorithm.Time < self.nextUpdateTime:
            return insights
        expiry = Expiry.EndOfYear(algorithm.Time)
        for symbol in self.etfSymbols:
            if symbol not in data.Bars:
                continue
            insights.append(Insight.Price(symbol, expiry, InsightDirection.Up))
            
        if all([algorithm.Portfolio[symbol].TotalSaleVolume > 0 for symbol in self.etfSymbols]):
            self.nextUpdateTime = expiry
            
        return insights
    
    
    
    def OnSecuritiesChanged(self, algorithm, changes):
        pass
    
    
import operator
import numpy as np
from collections import namedtuple
import functools




class MomentumAlphaModel(AlphaModel):
    
    def __init__(self, algorithm, numberOfMonthsUntilFullyInvested, maxNumberOfStocksToHold_Momentum, maxNumberOfStocksToHold_Momentum_VolatilityCondition, 
                        numberOfTradingDaysInvestedIfInProfit, numberOfTradingDaysInvestedIfInLoss, minMomentumPercent, riskManagementEnabled):
                            
        self.Name = "Momentum"
        self.symbolDataDict = {}
        self.nextUpdateTime = datetime.min
        self.numberOfMonthsUntilFullyInvested = numberOfMonthsUntilFullyInvested
        self.maxNumberOfStocksToHold = maxNumberOfStocksToHold_Momentum
        self.numberOfStocksToAddPerMonth = int(maxNumberOfStocksToHold_Momentum/numberOfMonthsUntilFullyInvested)
        insightDuration = namedtuple('InsightDuration', 'Profit, Loss')
        self.insightDuration = insightDuration(Profit=int(365/252*numberOfTradingDaysInvestedIfInProfit), Loss=int(365/252*numberOfTradingDaysInvestedIfInLoss))
        self.minMomentumPercent = minMomentumPercent
        self.IsInitRun = True
        self.monthsSinceStart = 0
        self.month = None
        self.scheduledEvent = None
        self.pcm = algorithm.pcm
        self.riskModel = None
        self.riskManagementEnabled = riskManagementEnabled
        self.insightCollection = InsightCollection()
       
    
    
 
    
    def Update(self, algorithm, data):
        insights = []
        # check if it's time to emit insights
        if algorithm.Time < self.nextUpdateTime:
            return insights
        
        # if this is the first run and we're in live mode, we must load the insights from the object store
        if self.IsInitRun:
            insightsFromObjectStore = self.LoadInsightsFromObjectStore(algorithm)
            insights.extend(insightsFromObjectStore)
            self.monthsSinceStart += int(len(insightsFromObjectStore)/self.numberOfStocksToAddPerMonth)
            self.IsInitRun = False
        
        if self.riskModel is not None and self.riskModel.safeModeExpiryTime > algorithm.Time:
            insights.extend(self.AdjustInsightExpiryTimesForActiveMomentumHoldings(algorithm))
            return insights
        
        # check if we can add more holdings for this strategy
        targetCount = min(self.maxNumberOfStocksToHold, self.monthsSinceStart*self.numberOfStocksToAddPerMonth)
        count = len([symbol for symbol, symbolData in self.symbolDataDict.items() if symbolData.Holdings.Invested and symbolData.InsightExpiry >= algorithm.Time]) 
        if count > targetCount - self.numberOfStocksToAddPerMonth:
            self.nextUpdateTime = self.GetNextUpdateTime(algorithm)
            insights.extend(self.AdjustInsightExpiryTimesForActiveMomentumHoldings(algorithm))
            return insights
        
        if self.month != algorithm.Time.month:
            # create the ranking (Momentum & Kaufman Efficiency Ratio) and select the best N stocks where we're not invested yet; default is N=2
            filteredSymbolDataDict = {symbol : symbolData for symbol, symbolData in self.symbolDataDict.items() if (symbol in data.Bars 
                                                                                                                and symbolData.IsReady 
                                                                                                                and symbolData.Momentum > self.minMomentumPercent
                                                                                                                and (not symbolData.Holdings.Invested))}
                    
                
            sortedByMomentum = [*map(operator.itemgetter(0), sorted(filteredSymbolDataDict.items(), key = lambda x: x[1].Momentum, reverse=True))]
            sortedByKER = [*map(operator.itemgetter(0), sorted(filteredSymbolDataDict.items(), key = lambda x: x[1].KER ))]
            
            totalRank = {symbol : sortedByMomentum.index(symbol) + sortedByKER.index(symbol) for symbol, _ in filteredSymbolDataDict.items()}
            sortedByTotalRank = sorted(totalRank.items(), key = lambda x: x[1])
            selection = [x[0] for x in sortedByTotalRank if not algorithm.Portfolio[x[0]].Invested][:self.numberOfStocksToAddPerMonth]
            
            if len(selection) >= self.numberOfStocksToAddPerMonth and count >= targetCount:
                self.month = algorithm.Time.month
            elif len(selection) == 0:
                insights.extend(self.AdjustInsightExpiryTimesForActiveMomentumHoldings(algorithm))
                return insights
            
            # create insights for the selected stocks
            for symbol in selection:
                symbolData = self.symbolDataDict[symbol]
                if not algorithm.Portfolio[symbol].Invested:
                    symbolData.InsightExpiry = algorithm.Time +  timedelta(days=min(self.insightDuration)) 
                    insights.append(Insight.Price(symbol, symbolData.InsightExpiry, InsightDirection.Up))
                    count += 1
            
        # adjust the time for nextInsightUpdate to avoid unnecessary computations    
        if len(insights) >= self.numberOfStocksToAddPerMonth or (count >=targetCount):
            self.nextUpdateTime = self.GetNextUpdateTime(algorithm)
        insights.extend(self.AdjustInsightExpiryTimesForActiveMomentumHoldings(algorithm))
        if algorithm.LiveMode:
            self.insightCollection.AddRange(insights)
        return insights
        
    
    
    def AdjustInsightExpiryTimesForActiveMomentumHoldings(self, algorithm):
        # adjust insight expiry times for symbols with active insights if necessary 
        insights = []
        for symbol, symbolData in self.symbolDataDict.items():
            if not symbolData.Holdings.Invested or symbolData.InsightExpiry < algorithm.Time:
                continue
            if symbolData.InsightExpiry > self.nextUpdateTime + timedelta(1):
                continue
            if (not symbolData.Flag and symbolData.Holdings.UnrealizedProfit > 0):
                symbolData.Flag = True
                td = timedelta(days = self.insightDuration.Profit - self.insightDuration.Loss)
                if td.days > 0:
                    symbolData.InsightExpiry += td
                    insights.append(Insight.Price(symbol, symbolData.InsightExpiry, InsightDirection.Up))
        return insights
        
        
    def GetNextUpdateTime(self, algorithm):
        nextInsightExpiry = min([symbolData.InsightExpiry for _, symbolData in self.symbolDataDict.items() if symbolData.Holdings.Invested and symbolData.InsightExpiry > algorithm.Time], default=datetime.max)
        return min([Expiry.EndOfMonth(algorithm.Time) - timedelta(days=3), nextInsightExpiry])
        
    
    def OnSecuritiesChanged(self, algorithm, changes):
        if self.riskManagementEnabled and self.riskModel is None and self.pcm.riskModel is not None:
            self.riskModel = self.pcm.riskModel
        # tracks the changes in our universe of securities 
        if self.scheduledEvent is None and algorithm.Benchmark is not None:
            symbol = algorithm.Benchmark.Security.Symbol
            self.scheduledEvent = algorithm.Schedule.On(algorithm.DateRules.MonthEnd(symbol, 1), algorithm.TimeRules.Midnight, functools.partial(self.PersistInsightCollection, algorithm) )
        
        for security in changes.RemovedSecurities:
            symbolData = self.symbolDataDict.pop(security.Symbol, None)
            if symbolData is not None:
                symbolData.Dispose(algorithm)
        for security in changes.AddedSecurities:
            if not security.IsTradable or security.Fundamentals is None:
                continue
            symbol = security.Symbol
            if symbol not in self.symbolDataDict:
                self.symbolDataDict[symbol] = SymbolData(algorithm, security)
                
    
    def PersistInsightCollection(self, algorithm):
        # we also use this scheduled event handler to adjust self.monthsSinceStart
        self.monthsSinceStart += 1
        # stores all active insights from this alpha model in an object store
        if not algorithm.LiveMode:
            return
        activeInsights = self.insightCollection.GetActiveInsights(algorithm.UtcTime)
        insightDict = {insight.Id : [insight.Symbol, insight.Period, insight.Direction, insight.SourceModel, insight.GeneratedTimeUtc, insight.CloseTimeUtc] for insight in activeInsights}
        df = pd.DataFrame(insightDict.values(), index=insightDict.keys(), columns=['Symbol','Period','Direction','SourceModel','GeneratedTimeUtc','CloseTimeUtc'])
        algorithm.ObjectStore.Save(self.Name + "InsightCollection", df.to_json(orient='split', default_handler = str))
        
        
    
    
    def LoadInsightsFromObjectStore(self, algorithm):
        # loads all insights from the object store if we are in live mode
        # ensures we track the insight timings correctly between redeployments
        if not algorithm.LiveMode:
            return []
        insights = []
        insightCollection = InsightCollection()
        key = self.Name + "InsightCollection"
        if not algorithm.ObjectStore.ContainsKey(key):
            return insights
            
        storedInsightsDf = pd.read_json(algorithm.ObjectStore.Read(key), orient='split')
        storedInsightsDf.loc[:, 'Period'] = pd.to_timedelta(storedInsightsDf.Period, unit='ms')
        storedInsightsDf.loc[:, 'GeneratedTimeUtc'] = pd.to_datetime(storedInsightsDf.GeneratedTimeUtc, unit='ms', utc=True)
        storedInsightsDf.loc[:, 'CloseTimeUtc'] = pd.to_datetime(storedInsightsDf.CloseTimeUtc, unit='ms', utc=True)
        filteredInsightsDf = storedInsightsDf.loc[(storedInsightsDf.SourceModel.eq(self.Name) 
                                                    & storedInsightsDf.CloseTimeUtc.gt(algorithm.UtcTime) 
                                                    & storedInsightsDf.Direction.eq(1) 
                                                    & storedInsightsDf.GeneratedTimeUtc.lt(algorithm.UtcTime))]
        
        for row in filteredInsightsDf.itertuples():
            symbol = SymbolCache.GetSymbol(row.Symbol)
            
            if symbol not in self.symbolDataDict:
                if symbol not in algorithm.ActiveSecurities.Keys:
                    continue
                security = algorithm.Securities[symbol]
                if not (security.IsTradable and symbol in algorithm.CurrentSlice.Bars):
                    continue
                self.symbolDataDict[symbol] = SymbolData(algorithm, security)
                self.symbolDataDict[symbol].InsightExpiry = row.CloseTimeUtc.to_pydatetime()
                insight = Insight.Price(symbol, row.CloseTimeUtc.to_pydatetime(), row.Direction)
                insights.append(insight)
        
        return insights
                
                
      
        
        

    
class SymbolData:
    
    def __init__(self, algorithm, security):
        self.algorithm = algorithm
        self.Security = security
        self.Symbol = security.Symbol
        self.Holdings = security.Holdings
        self.InsightExpiry = datetime.min
        self.Flag = False
        self.SetupIndicators(algorithm)
        
        
    def SetupIndicators(self, algorithm):
        resolution = Resolution.Daily
        period = self.Security.Exchange.TradingDaysPerYear
        delay_period = int(period/12)
        self.momp = MomentumPercent(period)
        self.momentum = IndicatorExtensions.Of(Delay(delay_period), self.momp)
        algorithm.RegisterIndicator(self.Symbol, self.momp, resolution)
        algorithm.WarmUpIndicator(self.Symbol, self.momp, resolution)
        self.ker = KaufmanEfficiencyRatio(period)
        self.ker = IndicatorExtensions.Of(Delay(delay_period), self.ker)
        algorithm.RegisterIndicator(self.Symbol, self.ker, resolution)
        algorithm.WarmUpIndicator(self.Symbol, self.ker, resolution)
        self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution)
        
    
    def Dispose(self, algorithm):
        algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
    
        
    
    @property
    def Momentum(self):
        return self.momentum.Current.Value
    
    @property
    def KER(self):
        return self.ker.Current.Value
    
    @property
    def IsReady(self):
        return self.momp.IsReady and self.ker.IsReady
        
        
        


class RiskModel:
    
    def __init__(self, algorithm, security, 
                       momentumBudget, momentumBudgetVolCond, 
                       valueBudget, valueBudgetVolCond, 
                       riskManagementEnabled, maxDrawdown, maxVIX, numberOfTradingDaysBeforeReset):
                           
        self.algorithm = algorithm
        self.Security = security
        self.Symbol = security.Symbol
        
        self.portfolioHigh = algorithm.Portfolio.TotalPortfolioValue
        self.SafeMode = False
        self.safeModeExpiryTime = datetime.min
        self.momentumBudget = momentumBudget
        self.momentumBudgetDefault = momentumBudget
        self.momentumBudgetVolCond = momentumBudgetVolCond
        self.valueBudget = valueBudget
        self.valueBudgetDefault = valueBudget
        self.valueBudgetVolCond = valueBudgetVolCond
        self.riskManagementEnabled = riskManagementEnabled
        self.maxDrawdown = -abs(maxDrawdown)
        self.maxVIX = maxVIX
        self.numberOfTradingDaysBeforeReset = timedelta(days=numberOfTradingDaysBeforeReset)
        
        self.budgetBySourceModel = defaultdict(float)
        self.budgetBySourceModel.update({'Momentum':momentumBudget, 'Value':valueBudget})
        self.hour = None
        
        algorithm.Schedule.On(algorithm.DateRules.EveryDay(self.Symbol), algorithm.TimeRules.Every(timedelta(hours=1)), self.Update)
        
    
    
    @property
    def BudgetBySourceModel(self):
        if not self.riskManagementEnabled:
            return self.budgetBySourceModel
        self.budgetBySourceModel.update({"Momentum":self.momentumBudget, "Value":self.valueBudget})
        return self.budgetBySourceModel
    
    

    def Update(self):
        if not self.SafeMode and self.algorithm.Time > self.safeModeExpiryTime:
            self.momentumBudget = self.momentumBudgetDefault
            self.valueBudget = self.valueBudgetDefault
            self.SafeMode = self.Security.Price > self.maxVIX and self.CurrentDrawdown < self.maxDrawdown
            if self.SafeMode:
                self.momentumBudget = self.momentumBudgetVolCond
                self.valueBudget = self.valueBudgetVolCond
                self.algorithm.Debug(f"{self.algorithm.Time} | ACHTUNG !!! Volatility-Condition erfüllt!")
        else:
            if self.SafeMode and self.Security.Price < self.maxVIX and self.CurrentDrawdown > self.maxDrawdown:
                self.safeModeExpiryTime = self.algorithm.Time + self.numberOfTradingDaysBeforeReset
                self.SafeMode = False
                self.algorithm.Debug(f"{self.algorithm.Time} | Volatility-Condition wieder aufgehoben!")
                self.algorithm.Debug(f"Safe-Mode verfällt am {self.safeModeExpiryTime}.")
                
        
            
    @property
    def CurrentDrawdown(self):
        currentTPV = self.algorithm.Portfolio.TotalPortfolioValue
        if currentTPV > self.portfolioHigh:
            self.portfolioHigh = currentTPV
        return currentTPV/self.portfolioHigh - 1
        
        
       
from collections import namedtuple
import operator
import functools


class ValueAlphaModel(AlphaModel):
    
    def __init__(self, algorithm, numberOfMonthsUntilFullyInvested, maxNumberOfStocksToHold_Value, maxNumberOfStocksToHold_Value_VolatilityCondition, 
                        min_ROA, min_PE_Ratio, numberOfTradingDaysInvestedIfInProfit, numberOfTradingDaysInvestedIfInLoss, riskManagementEnabled):
                            
        self.Name = "Value"
        self.symbolDataDict = {}
        self.nextUpdateTime = datetime.min
        self.numberOfMonthsUntilFullyInvested = numberOfMonthsUntilFullyInvested
        self.maxNumberOfStocksToHold = maxNumberOfStocksToHold_Value
        self.maxNumberOfStocksToHold_Value_VolatilityCondition = maxNumberOfStocksToHold_Value_VolatilityCondition
        self.numberOfStocksToAddPerMonth = int(maxNumberOfStocksToHold_Value/numberOfMonthsUntilFullyInvested)
        self.min_ROA = min_ROA
        self.min_PE_Ratio = min_PE_Ratio
        insightDuration = namedtuple('InsightDuration', 'Profit, Loss')
        self.insightDuration = insightDuration(Profit=int(365/252*numberOfTradingDaysInvestedIfInProfit), Loss=int(365/252*numberOfTradingDaysInvestedIfInLoss))
        self.monthsSinceStart = 0
        self.month = None
        self.IsInitRun = True
        self.scheduledEvent = None
        self.insightCollection = InsightCollection()
        self.pcm = algorithm.pcm
        self.riskModel = None
        self.riskManagementEnabled = riskManagementEnabled

        
        
    
    
    def Update(self, algorithm, data):
        # !!!!!!!!!!!!
        ######## DEBUG
        if algorithm.Time > datetime(2020, 3, 1):
            BREAK = "BREAK!"
        ######## END OF DEBUG
        # !!!!!!!!!!!!!!!!!
        
        
        insights = []
        # check if it's time to emit insights
        if algorithm.Time < self.nextUpdateTime:
            return insights
            
        # if this is the first run and we're in live mode, we must load the insights from the object store 
        if self.IsInitRun:
            insightsFromObjectStore = self.LoadInsightsFromObjectStore(algorithm)
            insights.extend(insightsFromObjectStore)
            self.monthsSinceStart += int(len(insightsFromObjectStore)/self.numberOfStocksToAddPerMonth)
            self.IsInitRun = False
        
        targetCount = min(self.maxNumberOfStocksToHold, self.monthsSinceStart*self.numberOfStocksToAddPerMonth)
        # adjust the target holdings count if volatility condition is met
        if self.riskManagementEnabled and self.riskModel is not None and (self.riskModel.SafeMode or self.riskModel.safeModeExpiryTime > algorithm.Time):
            targetCount = self.riskModel.NumberOfStocksBySourceModel[self.Name]
            
        count = len([symbol for symbol, symbolData in self.symbolDataDict.items() if symbolData.Holdings.Invested and symbolData.InsightExpiry >= algorithm.Time]) 
               
        # check if we can add more holdings for this strategy
        if count > targetCount - self.numberOfStocksToAddPerMonth:
            self.nextUpdateTime = self.GetNextUpdateTime(algorithm)
            insights.extend(self.AdjustInsightExpiryTimesForActiveValueHoldings(algorithm))
            return insights
        
        if self.month != algorithm.Time.month:
            # create ranking for this strategy (based on EVtoEBIT)
            filteredSymbolDataDict = {symbol : symbolData for symbol, symbolData in self.symbolDataDict.items() if (symbol in data.Bars
                                                                                                                    and symbolData.ROA > self.min_ROA
                                                                                                                    and symbolData.PE_Ratio > self.min_PE_Ratio
                                                                                                                    and (not symbolData.Holdings.Invested))}
            sortedByEVToEBIT = sorted(filteredSymbolDataDict.items(), key = lambda x: x[1].EVtoEBIT)
            selection = [*map(operator.itemgetter(0), sortedByEVToEBIT)][:self.numberOfStocksToAddPerMonth]
            
            if len(selection) >= self.numberOfStocksToAddPerMonth and count >= targetCount:
                self.month = algorithm.Time.month
            elif len(selection) == 0:
                insights.extend(self.AdjustInsightExpiryTimesForActiveValueHoldings(algorithm))
                return insights
            
            # create insights for the selected stocks 
            for symbol in selection:
                symbolData = self.symbolDataDict[symbol]
                if not algorithm.Portfolio[symbol].Invested:
                    symbolData.InsightTime = algorithm.Time
                    symbolData.InsightExpiry = algorithm.Time + timedelta(days=min(self.insightDuration)) 
                    insights.append(Insight.Price(symbol, symbolData.InsightExpiry, InsightDirection.Up))
                    count +=1
                    
                        
        # adjust the time for nextInsightUpdate to avoid unnecessary computations            
        if len(insights) >= self.numberOfStocksToAddPerMonth or (count >=targetCount):
            self.nextUpdateTime = self.GetNextUpdateTime(algorithm)
        insights.extend(self.AdjustInsightExpiryTimesForActiveValueHoldings(algorithm))
        if algorithm.LiveMode:
            self.insightCollection.AddRange(insights)
        return insights
        
    
    def AdjustInsightExpiryTimesForActiveValueHoldings(self, algorithm):
        # adjust insight expiry times for symbols with active insights if necessary 
        insights = []
        for symbol, symbolData in self.symbolDataDict.items():
            if not symbolData.Holdings.Invested or symbolData.InsightExpiry < algorithm.Time:
                continue
            if symbolData.InsightExpiry > self.nextUpdateTime + timedelta(1):
                continue
            if (not symbolData.Flag and symbolData.Holdings.UnrealizedProfit > 0):
                symbolData.Flag = True
                td = timedelta(days = self.insightDuration.Profit - self.insightDuration.Loss)
                if td.days > 0:
                    symbolData.InsightExpiry += td
                    insights.append(Insight.Price(symbol, symbolData.InsightExpiry, InsightDirection.Up))
        return insights
        
        
    def GetNextUpdateTime(self, algorithm):
        nextInsightExpiry = min([symbolData.InsightExpiry for _, symbolData in self.symbolDataDict.items() if symbolData.Holdings.Invested and symbolData.InsightExpiry > algorithm.Time], default=datetime.max)
        return min([Expiry.EndOfMonth(algorithm.Time) - timedelta(days=3), nextInsightExpiry])
    
    
    def OnSecuritiesChanged(self, algorithm, changes):
        if self.riskManagementEnabled and self.riskModel is None and self.pcm.riskModel is not None:
            self.riskModel = self.pcm.riskModel
        if self.scheduledEvent is None and algorithm.Benchmark is not None:
            symbol = algorithm.Benchmark.Security.Symbol
            self.scheduledEvent = algorithm.Schedule.On(algorithm.DateRules.MonthEnd(symbol, 1), algorithm.TimeRules.Midnight, functools.partial(self.PersistInsightCollection, algorithm) )
        for security in changes.RemovedSecurities:
            symbolData = self.symbolDataDict.pop(security.Symbol, None)
            if symbolData is not None:
                symbolData.Dispose(algorithm)
        for security in changes.AddedSecurities:
            if not security.IsTradable or security.Fundamentals is None:
                continue
            symbol = security.Symbol
            if symbol not in self.symbolDataDict:
                self.symbolDataDict[symbol] = SymbolData(algorithm, security)
    
    
    def PersistInsightCollection(self, algorithm):
        # we also use this scheduled event handler to adjust self.monthsSinceStart
        self.monthsSinceStart += 1
        # stores all active insights from this alpha model in an object store
        if not algorithm.LiveMode:
            return
        activeInsights = self.insightCollection.GetActiveInsights(algorithm.UtcTime)
        insightDict = {insight.Id : [insight.Symbol, insight.Period, insight.Direction, insight.SourceModel, insight.GeneratedTimeUtc, insight.CloseTimeUtc] for insight in activeInsights}
        df = pd.DataFrame(insightDict.values(), index=insightDict.keys(), columns=['Symbol','Period','Direction','SourceModel','GeneratedTimeUtc','CloseTimeUtc'])
        algorithm.ObjectStore.Save(self.Name + "InsightCollection", df.to_json(orient='split', default_handler = str))
        
    
    def LoadInsightsFromObjectStore(self, algorithm):
        if not algorithm.LiveMode:
            return []
        insights = []
        insightCollection = InsightCollection()
        key = self.Name + "InsightCollection"
        if not algorithm.ObjectStore.ContainsKey(key):
            return []
            
        storedInsightsDf = pd.read_json(algorithm.ObjectStore.Read(key), orient='split')
        storedInsightsDf.loc[:, 'Period'] = pd.to_timedelta(storedInsightsDf.Period, unit='ms')
        storedInsightsDf.loc[:, 'GeneratedTimeUtc'] = pd.to_datetime(storedInsightsDf.GeneratedTimeUtc, unit='ms', utc=True)
        storedInsightsDf.loc[:, 'CloseTimeUtc'] = pd.to_datetime(storedInsightsDf.CloseTimeUtc, unit='ms', utc=True)
        filteredInsightsDf = storedInsightsDf.loc[(storedInsightsDf.SourceModel.eq(self.Name) 
                                                    & storedInsightsDf.CloseTimeUtc.gt(algorithm.UtcTime) 
                                                    & storedInsightsDf.Direction.eq(1) 
                                                    & storedInsightsDf.GeneratedTimeUtc.lt(algorithm.UtcTime))]
        
        for row in filteredInsightsDf.itertuples():
            symbol = SymbolCache.GetSymbol(row.Symbol)
      
            if symbol not in self.symbolDataDict:
                security = algorithm.Securities[symbol]
                if not (security.IsTradable and symbol in algorithm.CurrentSlice.Bars):
                    continue
                self.symbolDataDict[symbol] = SymbolData(algorithm, security)
                self.symbolDataDict[symbol].InsightExpiry = row.CloseTimeUtc.to_pydatetime()
                insight = Insight.Price(symbol, row.CloseTimeUtc.to_pydatetime(), row.Direction)
                insights.append(insight)
  
        return insights
                


    
class SymbolData:
    
    def __init__(self, algorithm, security):
        self.algorithm = algorithm
        self.Security = security
        self.Symbol = security.Symbol
        self.Holdings = security.Holdings
        self.InsightExpiry = datetime.min
        self.Flag = False
        self.InsightTime = datetime.min
        self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, Resolution.Daily)
    
    
    def Dispose(self, algorithm):
        algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
        
    
    @property
    def ROA(self):
        return self.Security.Fundamentals.OperationRatios.ROA.OneYear
    
    @property
    def PE_Ratio(self):
        return self.Security.Fundamentals.ValuationRatios.PERatio
    
    @property
    def EVtoEBIT(self):
        return self.Security.Fundamentals.ValuationRatios.EVtoEBIT
        
        
        

class RiskModel:
    
    def __init__(self, algorithm, security, 
                       momentumBudget, momentumBudgetVolCond, 
                       valueBudget, valueBudgetVolCond, 
                       riskManagementEnabled, maxDrawdown, maxVIX, numberOfTradingDaysBeforeReset):
                           
        self.algorithm = algorithm
        self.Security = security
        self.Symbol = security.Symbol
        
        self.portfolioHigh = algorithm.Portfolio.TotalPortfolioValue
        self.SafeMode = False
        self.safeModeExpiryTime = datetime.min
        self.momentumBudget = momentumBudget
        self.momentumBudgetDefault = momentumBudget
        self.momentumBudgetVolCond = momentumBudgetVolCond
        self.valueBudget = valueBudget
        self.valueBudgetDefault = valueBudget
        self.valueBudgetVolCond = valueBudgetVolCond
        self.riskManagementEnabled = riskManagementEnabled
        self.maxDrawdown = -abs(maxDrawdown)
        self.maxVIX = maxVIX
        self.numberOfTradingDaysBeforeReset = timedelta(days=numberOfTradingDaysBeforeReset)
        
        self.budgetBySourceModel = defaultdict(float)
        self.budgetBySourceModel.update({'Momentum':momentumBudget, 'Value':valueBudget})
        self.hour = None
        
        algorithm.Schedule.On(algorithm.DateRules.EveryDay(self.Symbol), algorithm.TimeRules.Every(timedelta(hours=1)), self.Update)
        
    
    
    @property
    def BudgetBySourceModel(self):
        if not self.riskManagementEnabled:
            return self.budgetBySourceModel
        self.budgetBySourceModel.update({"Momentum":self.momentumBudget, "Value":self.valueBudget})
        return self.budgetBySourceModel
    
    

    def Update(self):
        if not self.SafeMode and self.algorithm.Time > self.safeModeExpiryTime:
            self.momentumBudget = self.momentumBudgetDefault
            self.valueBudget = self.valueBudgetDefault
            self.SafeMode = self.Security.Price > self.maxVIX and self.CurrentDrawdown < self.maxDrawdown
            if self.SafeMode:
                self.momentumBudget = self.momentumBudgetVolCond
                self.valueBudget = self.valueBudgetVolCond
                self.algorithm.Debug(f"{self.algorithm.Time} | ACHTUNG !!! Volatility-Condition erfüllt!")
        else:
            if self.SafeMode and self.Security.Price < self.maxVIX and self.CurrentDrawdown > self.maxDrawdown:
                self.safeModeExpiryTime = self.algorithm.Time + self.numberOfTradingDaysBeforeReset
                self.SafeMode = False
                self.algorithm.Debug(f"{self.algorithm.Time} | Volatility-Condition wieder aufgehoben!")
                self.algorithm.Debug(f"Safe-Mode verfällt am {self.safeModeExpiryTime}.")
                
        
            
    @property
    def CurrentDrawdown(self):
        currentTPV = self.algorithm.Portfolio.TotalPortfolioValue
        if currentTPV > self.portfolioHigh:
            self.portfolioHigh = currentTPV
        return currentTPV/self.portfolioHigh - 1
        
        
        
        
      
############

    # def GetLatestLivePortfolioStateFromObjectStore(self, algorithm):
    #     if not ( self.IsInitRun and algorithm.ObjectStore.ContainsKey('PortfolioState')):  #algorithm.LiveMode and   ## <--- wieder hinzufügen!!!
    #         return []
    #     portfolioState = pd.read_json(algorithm.ObjectStore.Read('PortfolioState'))
    #     if portfolioState is None or portfolioState.empty:
    #         return []
    #     portfolioState.loc[:,'Entry'] = pd.to_datetime(portfolioState.Entry.clip(lower=0).replace(0, np.nan), unit='ms')
    #     portfolioState.loc[:, 'Exit'] = pd.to_datetime(portfolioState.Exit.clip(lower=0).replace(0, np.nan), unit='ms')
    #     previousLiveHoldings = portfolioState.loc[portfolioState.Exit.isnull()].index.map(SymbolCache.GetSymbol).tolist()
    #     self.IsInitRun = False
    #     return previousLiveHoldings
    
    
    #     self.positionChangesDict = defaultdict(PortfolioSnapshot)
        
        
    #     self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(0,0), self.UpdateCharts)
        
    
    # def UpdateCharts(self):
    #     numHoldings = len([holding for _, holding in self.Portfolio.items() if holding.Invested])
        
    #     self.Plot('Portfolio Holdings', 'Number of Holdings', numHoldings)
        
        


    # def OnOrderEvent(self, orderEvent):
    #     # if not self.LiveMode:
    #     #     return
        
    #     if orderEvent.Status == OrderStatus.Filled:
    #         symbol = orderEvent.Symbol
            
    #         if not self.Portfolio[symbol].Invested and symbol in self.positionChangesDict:
    #             # das heißt es handelt sich hierbei um einen Exit
    #             self.positionChangesDict.update({symbol : self.positionChangesDict[symbol]._replace(Exit = self.Time, Quantity = 0)})
    #             return
    #         self.positionChangesDict.update({symbol : self.positionChangesDict[symbol]._replace(Entry = self.Time, Quantity = orderEvent.Quantity)})
            
                
                
    
    # def OnEndOfAlgorithm(self):
    #     if not self.LiveMode:
    #         return
        
    #     for key in list([x.Key for x in self.ObjectStore.GetEnumerator()]):
    #         if key.endswith('InsightCollection'):
    #             self.ObjectStore.Delete(key)
        
        # hier die positionChangedDict im ObjectStore speichern, falls LiveMode
        
        # if not self.LiveMode:
        #     return
     
                
        # if self.ObjectStore.ContainsKey('PortfolioState'):
        #     self.ObjectStore.Delete('PortfolioState')
        # self.ObjectStore.Save('PortfolioState', pd.DataFrame(self.positionChangesDict.values(), index=self.positionChangesDict.keys()).to_json(default_handler=str))
            
        
            
          #############
        
        
                
    
    # def GetObjectStoreSymbols(self, algorithm): # SymbolsFromObjectStore(self, algorithm):
    #     if not (self.IsInitRun and algorithm.ObjectStore.ContainsKey('PortfolioState')):  
    #         return 0
    #     portfolioState = pd.read_json(algorithm.ObjectStore.Read('PortfolioState'))
    #     if portfolioState is None or portfolioState.empty:
    #         return 0
    #     portfolioState.loc[:, 'Entry'] = pd.to_datetime(portfolioState.Entry.clip(lower=0).replace(0, np.nan), unit='ms')
    #     portfolioState.loc[:, 'Exit'] = pd.to_datetime(portfolioState.Exit.clip(lower=0).replace(0, np.nan), unit='ms')
    #     latestPortfolioState = portfolioState.loc[portfolioState.Exit.isnull() & portfolioState.Quantity.gt(0)] \
    #                                          .index.map(SymbolCache.GetSymbol).tolist()
                                             
    #                                         #  .apply(lambda x: PortfolioSnapshot(Entry = x.Entry, Exit = x.Exit, Quantity = x.Quantity), axis=1) \
    #                                         #  .rename(lambda x: SymbolCache.GetSymbol(x)) \
    #                                         #  .to_dict()
                                             
    #     self.IsInitRun = False
    #     return latestPortfolioState
        
        # return len([symbol for symbol in latestPortfolioState if algorithm.Portfolio[symbol].Invested])
           
            
                #####################
        #########
        
            # currentTPV = self.algorithm.Portfolio.TotalPortfolioValue
            # if currentTPV > self.portfolioHigh:
            #     self.portfolioHigh = currentTPV
            # drawdown = currentTPV/self.portfolioHigh - 1
        
        # # targets.extend(self.CreateTargetsForLivePortfolioStateRecovery(algorithm))
        # if not self.latestLivePortfolioState:
        #     self.latestLivePortfolioState = self.GetLatestLivePortfolioStateFromObjectStore(algorithm)
            
        
        # for symbol, portfolioSnapshot in list(self.latestLivePortfolioState.items()):
        #     if algorithm.Time - portfolioSnapshot.Entry > timedelta(days=265):
        #         target = PortfolioTarget(symbol, 0)
        #         targets.append(target)
        #         del self.latestLivePortfolioState[symbol]
        #         # self.latestLivePortfolioState.pop(symbol)
        #         continue
        #     else:
        #         if not algorithm.Portfolio[symbol].Invested:
        #             target = PortfolioTarget(symbol, portfolioSnapshot.Quantity)
        #             residualBuyingPower -= abs(target.Quantity*algorithm.Securities[symbol].AskPrice)
        #             targets.append(target)
            
        #     # if algorithm.Portfolio[symbol].Invested and (algorithm.Time - portfolioSnapshot.Entry < timedelta(days=265)):
        #     #     continue
        #     # if not algorithm.Portfolio[symbol].Invested and (algorithm.Time - portfolioSnapshot.Entry < timedelta(days=265)):
        #     #     target = PortfolioTarget(symbol, portfolioSnapshot.Quantity)
        #     #     residualBuyingPower -= abs(target.Quantity*algorithm.Securities[symbol].Price)
        #     #     if target is None:
        #     #         self.symbolsToIgnore.add(symbol)
        #     #         continue
        #     #     targets.append(target)
        
        
        
        ###
        
        
            # def GetLatestLivePortfolioStateFromObjectStore(self, algorithm):
    #     if not ( self.IsInitRun and algorithm.ObjectStore.ContainsKey('PortfolioState')):  #algorithm.LiveMode and
    #         return {}
    #     portfolioState = pd.read_json(algorithm.ObjectStore.Read('PortfolioState'))
    #     if portfolioState is None or portfolioState.empty:
    #         return {}
    #     portfolioState.loc[:, 'Entry'] = pd.to_datetime(portfolioState.Entry.clip(lower=0).replace(0, np.nan), unit='ms')
    #     portfolioState.loc[:, 'Exit'] = pd.to_datetime(portfolioState.Exit.clip(lower=0).replace(0, np.nan), unit='ms')
        
    #     # previousLiveHoldings = portfolioState.loc[portfolioState.Exit.isnull()].index.map(SymbolCache.GetSymbol).tolist()
        
    #     # previousLiveHoldings = portfolioState.Quantity.rename(lambda x: SymbolCache.GetSymbol(x)).to_dict()
    #     # exit = null means there wasn't an exit yet, i.e. we have an active position for that security
    #     latestPortfolioState = portfolioState.loc[portfolioState.Exit.isnull() & portfolioState.Quantity.gt(0)] \
    #                                          .apply(lambda x: PortfolioSnapshot(Entry = x.Entry, Exit = x.Exit, Quantity = x.Quantity), axis=1) \
    #                                          .rename(lambda x: SymbolCache.GetSymbol(x)) \
    #                                          .to_dict()
                                             
    #     # algorithm.ObjectStore.Delete('PortfolioState')
    #     self.IsInitRun = False
    #     return latestPortfolioState
    
      ############
        
        
        # def GetObjectStoreRelatedSymbols(self, algorithm): # SymbolsFromObjectStore(self, algorithm):
    #     if not (self.IsInitRun and algorithm.ObjectStore.ContainsKey('PortfolioState')):  # LIVE_MODE !
    #         return 0
    #     portfolioState = pd.read_json(algorithm.ObjectStore.Read('PortfolioState'))
    #     if portfolioState is None or portfolioState.empty:
    #         return 0
    #     portfolioState.loc[:, 'Entry'] = pd.to_datetime(portfolioState.Entry.clip(lower=0).replace(0, np.nan), unit='ms')
    #     portfolioState.loc[:, 'Exit'] = pd.to_datetime(portfolioState.Exit.clip(lower=0).replace(0, np.nan), unit='ms')
    #     latestPortfolioState = portfolioState.loc[portfolioState.Exit.isnull() & portfolioState.Quantity.gt(0)] \
    #                                          .index.map(SymbolCache.GetSymbol).tolist()
                                             
    #                                         #  .apply(lambda x: PortfolioSnapshot(Entry = x.Entry, Exit = x.Exit, Quantity = x.Quantity), axis=1) \
    #                                         #  .rename(lambda x: SymbolCache.GetSymbol(x)) \
    #                                         #  .to_dict()
                                             
    #     self.IsInitRun = False
    #     return latestPortfolioState
    #             # CHECK = len([symbol for symbol in latestPortfolioState if algorithm.Portfolio[symbol].Invested]) ###DEBUG
    #     # return len([symbol for symbol in latestPortfolioState if algorithm.Portfolio[symbol].Invested])

import math
from helper_tools import sign
from collections import defaultdict



class CustomExecutionModel(ExecutionModel):
    
    def __init__(self):
        self.targetCollection = PortfolioTargetCollection()
        self.tol = .1  
        
    
    def Execute(self, algorithm, targets):
        self.targetCollection.AddRange(targets)
        if self.targetCollection.Count > 0:
            for target in self.targetCollection.OrderByMarginImpact(algorithm):
                orderQuantity = OrderSizing.GetUnorderedQuantity(algorithm, target)
                if orderQuantity == 0:
                    continue
                symbol = target.Symbol
                security = algorithm.Securities[symbol]
                holding = algorithm.Portfolio[symbol]
                if security.IsTradable: 
                    marginRemaining = algorithm.Portfolio.MarginRemaining
                    # we only need to check the remaining buying power if the order execution would increase the margin usage
                    if not holding.Invested and holding.Quantity*orderQuantity >= 0 and marginRemaining < security.Price*abs(orderQuantity):
                        buyingPower = min(1, security.Leverage)*marginRemaining*(1 - self.tol)
                        orderQuantity = min(math.floor(buyingPower/security.Price), abs(orderQuantity))*sign(orderQuantity)
                    if orderQuantity != 0:
                        algorithm.MarketOrder(symbol, orderQuantity)
                            
            self.targetCollection.ClearFulfilled(algorithm)            
                        
            
    
 
    
from collections import defaultdict, namedtuple



PortfolioSnapshot = namedtuple('PortfolioSnapshot', 'Entry, Exit, Quantity')
PortfolioSnapshot.__new__.__defaults__ = (datetime.min, )*(len(PortfolioSnapshot._fields) - 1) + (0, )

  
# faster alternative for itertools.groupby
def GroupBy(iterable, key = lambda x: x):
    d = defaultdict(list)
    for item in iterable:
        d[key(item)].append(item)
    return d.items()
    
  
def sign(x):
    return 1 if x > 0 else(-1 if x < 0 else 0)
    
        
        
from helper_tools import PortfolioSnapshot
from datetime import datetime, timedelta, timezone
from collections import namedtuple, defaultdict
# ----------------------------------------------------------
# Import the Framework Modules for this strategy
from selection import CustomUniverseSelectionModel
from alpha_mom import MomentumAlphaModel
from alpha_value import ValueAlphaModel
from alpha_etf import ConstantEtfAlphaModel
from portfolio import MultiSourcesPortfolioConstructionModel
from execution import CustomExecutionModel
# ----------------------------------------------------------




class MomentumValueStrategy(QCAlgorithm):

    def Initialize(self):
        ########################################################################
        # --------------------------------------------------------------------
        # Modifiable code block
        # --------------------------------------------------------------------
        ########################################################################
        
        # General Settings
        # --------------------
        self.SetStartDate(2000, 1, 1)
        # self.SetEndDate(2021, 2, 1)
        self.SetCash(1_000_000)  
        
        numberOfSymbolsCoarse = 2000
        numberOfSymbolsFine = 1000
        numberOfMonthsUntilFullyInvested = 12
        numberOfTradingDaysInvestedIfInProfit = 260
        numberOfTradingDaysInvestedIfInLoss = 260
        
        self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage)
        self.UniverseSettings.Resolution = Resolution.Daily
        self.Settings.FreePortfolioValuePercentage = 0.01
        self.DebugMode = False
        
        # Momentum Strategy Params
        # -------------------------
        maxNumberOfStocksToHold_Momentum = 24
        maxNumberOfStocksToHold_Momentum_VolatilityCondition = 24
        minMomentumPercent = 0.1
        maxBudget_Momentum = 0.5
        maxBudget_Momentum_VolatilityCondition = 0.5
        
        # Value Strategy Params
        # ----------------------
        maxNumberOfStocksToHold_Value = 24
        maxNumberOfStocksToHold_Value_VolatilityCondition = 48
        min_ROA = 0.15
        min_PE_Ratio = 5
        maxBudget_Value = 0.5
        maxBudget_Value_VolatilityCondition = 0.5
        
        # Risk Management / Volatility Condition Params
        # ----------------------------------------------
        riskManagementEnabled = False
        maxDrawdown = 0.2
        maxVIX = 35
        numberOfTradingDaysBeforeReset = 265
        
        # ETF Investing Params
        # ------------------------ 
        etfTickers = ["XSVM", "RFV"]
        minPortfolioBufferToEnableEtfInvesting = 0.1
        
        ########################################################################
        # ----------------------------------------------------------------------
        # End of modifiable code block
        # ----------------------------------------------------------------------
        ########################################################################
        
        
        
        self.InitCharts()
        self.UniverseSettings.Leverage = 1
        self.pcm = MultiSourcesPortfolioConstructionModel(maxBudget_Momentum, maxBudget_Momentum_VolatilityCondition, maxNumberOfStocksToHold_Momentum, maxNumberOfStocksToHold_Momentum_VolatilityCondition,
                                                                        maxBudget_Value, maxBudget_Value_VolatilityCondition, maxNumberOfStocksToHold_Value, maxNumberOfStocksToHold_Value_VolatilityCondition,
                                                                        numberOfTradingDaysBeforeReset, riskManagementEnabled, maxDrawdown, maxVIX, minPortfolioBufferToEnableEtfInvesting)
         
        self.AddUniverseSelection(CustomUniverseSelectionModel(numberOfSymbolsCoarse, numberOfSymbolsFine, etfTickers))
        
        self.AddAlpha(MomentumAlphaModel(self, numberOfMonthsUntilFullyInvested, maxNumberOfStocksToHold_Momentum, maxNumberOfStocksToHold_Momentum_VolatilityCondition, 
                                         numberOfTradingDaysInvestedIfInProfit, numberOfTradingDaysInvestedIfInLoss, minMomentumPercent, riskManagementEnabled))
                                         
        self.AddAlpha(ValueAlphaModel(self, numberOfMonthsUntilFullyInvested, maxNumberOfStocksToHold_Value, maxNumberOfStocksToHold_Value_VolatilityCondition, 
                                        min_ROA, min_PE_Ratio, numberOfTradingDaysInvestedIfInProfit, numberOfTradingDaysInvestedIfInLoss, riskManagementEnabled))
                                        
        self.AddAlpha(ConstantEtfAlphaModel(etfTickers))
        
        self.SetPortfolioConstruction(self.pcm)
        
        self.SetExecution(CustomExecutionModel())
        
        
        
        
        
    
    
    
    def InitCharts(self):
        spy = self.AddEquity("SPY", Resolution.Daily).Symbol
        self.SetBenchmark(spy)
        chart = Chart('Number of Stocks')
        chart.AddSeries(Series('Total', SeriesType.Line, 0, ""))
        chart.AddSeries(Series('ETF', SeriesType.Line, 0, ""))
        chart.AddSeries(Series('Momentum', SeriesType.Line, 0, ""))
        chart.AddSeries(Series('Value', SeriesType.Line, 0, ""))
        self.AddChart(chart)
        
    
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import math
import functools
from helper_tools import GroupBy, PortfolioSnapshot





class MultiSourcesPortfolioConstructionModel(PortfolioConstructionModel):
    
    def __init__(self, momentumBudget, momentumBudgetVolCond, momentumNumHoldings, momentumNumHoldingsVolCond,
                       valueBudget, valueBudgetVolCond, valueNumHoldings, valueNumHoldingsVolCond,
                       numberOfTradingDaysBeforeReset, riskManagementEnabled, maxDrawdown, maxVIX, minPortfolioBufferToEnableEtfInvesting):
                           
        self.insightCollection = InsightCollection()
        self.removedSymbols = []
        self.nextExpiryTime = datetime.min.replace(tzinfo=timezone.utc)
        self.updateFreq = timedelta(1)
        self.symbolsToIgnore = set()
        self.riskModel = None
        self.vix = Symbol.Create("VIX", SecurityType.Index, Market.USA)
        self.momentumBudget = momentumBudget
        self.momentumBudgetVolCond = momentumBudgetVolCond
        self.numberOfStocksMomentum = momentumNumHoldings
        self.numberOfStocksMomentumVolCond = momentumNumHoldingsVolCond
        self.valueBudget = valueBudget
        self.valueBudgetVolCond = valueBudgetVolCond
        self.numberOfStocksValue = valueNumHoldings
        self.numberOfStocksValueVolCond = valueNumHoldingsVolCond
        self.numberOfTradingDaysBeforeReset = numberOfTradingDaysBeforeReset
        self.riskManagementEnabled = riskManagementEnabled
        self.maxDrawdown = maxDrawdown
        self.maxVIX = maxVIX
        self.etfInvestingEnabled = True
        self.minPortfolioBufferToEnableEtfInvesting = minPortfolioBufferToEnableEtfInvesting
        self.scheduledEvent = None
        self.IsInitRun = True
        self.prevRiskMode = False
        
        
     
        
        
    
    def CreateTargets(self, algorithm, insights):
        targets = []
        if not self.CanUpdateTargets(algorithm, insights):
            return targets
        self.insightCollection.AddRange(insights)
        targets.extend(self.CreateFlatTargetsForRemovedSecurities())
        targets.extend(self.CreateFlatTargetsForExpiredInsights(algorithm))
        lastActiveInsights = self.GetLastActiveInsights(algorithm)
        if self.ShouldUpdateTargets(algorithm, lastActiveInsights):
            targets.extend(self.UpdatePortfolioTargets(algorithm, lastActiveInsights))
        self.UpdateNextExpiryTime(algorithm)
        return targets
        
        
    
    def CanUpdateTargets(self, algorithm, insights):
        return len(insights) > 0 or algorithm.UtcTime > self.nextExpiryTime
    
    def CreateFlatTargetsForRemovedSecurities(self):
        if len(self.removedSymbols) == 0:
            return []
        flatTargets = [PortfolioTarget(symbol, 0) for symbol in self.removedSymbols]
        self.insightCollection.Clear(self.removedSymbols)
        self.removedSymbols = []
        return flatTargets
        
    
    def CreateFlatTargetsForExpiredInsights(self, algorithm):
        flatTargets = []
        expiredInsights = self.insightCollection.RemoveExpiredInsights(algorithm.UtcTime)
        if len(expiredInsights) == 0:
            return flatTargets
        for symbol, _ in GroupBy(expiredInsights, key = lambda insight: insight.Symbol):
            if not self.insightCollection.HasActiveInsights(symbol, algorithm.UtcTime):
                flatTargets.append(PortfolioTarget(symbol, 0))
                continue
        return flatTargets
        
    
    def GetLastActiveInsights(self, algorithm):
        activeInsights = self.insightCollection.GetActiveInsights(algorithm.UtcTime)
        lastActiveInsights = []
        for k,g in GroupBy(activeInsights, key = lambda insight: (insight.Symbol, insight.SourceModel)):
            lastActiveInsights.append(sorted(g, key = lambda insight: insight.GeneratedTimeUtc)[-1])
        return lastActiveInsights
    
    
    def ShouldUpdateTargets(self, algorithm, lastActiveInsights):
        if algorithm.UtcTime > self.nextExpiryTime:
            return True
        for insight in lastActiveInsights:
            if insight.Symbol in self.symbolsToIgnore:
                continue
            holding = algorithm.Portfolio[insight.Symbol]
            if insight.Direction != InsightDirection.Flat and (not holding.Invested):
                return True
            if insight.Direction == InsightDirection.Up and (not holding.IsLong):
                return True
            if insight.Direction == InsightDirection.Down and (not holding.IsShort):
                return True
            if insight.Direction == InsightDirection.Flat and holding.Invested:
                return True
            else:
                continue
        return False
    
    
    def UpdateNextExpiryTime(self, algorithm):
        self.nextExpiryTime = self.insightCollection.GetNextExpiryTime()
        if self.nextExpiryTime is None:
            self.nextExpiryTime = algorithm.UtcTime + self.updateFreq
        self.nextExpiryTime = min(self.nextExpiryTime, algorithm.UtcTime + self.updateFreq)
    
    
    def UpdatePortfolioTargets(self, algorithm, lastActiveInsights):
        targets = []
        buffer = algorithm.Settings.FreePortfolioValuePercentage
        residualBuyingPower = algorithm.Portfolio.MarginRemaining/algorithm.Portfolio.TotalPortfolioValue/algorithm.UniverseSettings.Leverage - buffer
                                
        
        # create PortfolioTargets for Momentum and Value Alpha Model Insights, taking into account Volatility Condition
        for insight in lastActiveInsights:
            if (insight.SourceModel == 'ETF') or (insight.Symbol in self.symbolsToIgnore):
                continue
            if algorithm.Portfolio[insight.Symbol].Invested and insight.Direction != InsightDirection.Flat:
                continue
            count = self.riskModel.NumberOfStocksBySourceModel[insight.SourceModel]
            budget = self.riskModel.BudgetBySourceModel[insight.SourceModel]
            if count*budget == 0:
                target = PortfolioTarget(insight.Symbol, 0)
                targets.append(target)
                continue
            weight = (budget * insight.Direction - buffer)/ count
            target = PortfolioTarget.Percent(algorithm, insight.Symbol, weight)
            if target is None:
                self.symbolsToIgnore.add(insight.Symbol)
                continue
            targets.append(target)
            residualBuyingPower -= abs(weight)
            
        self.prevRiskMode = self.riskModel.SafeMode
        
            
        # create portfolio targets for ETFs, if necessary
        if self.etfInvestingEnabled:
            count = len([symbol for symbol, holding in algorithm.Portfolio.items() if holding.Invested])
            etfInsightSymbols = [insight.Symbol for insight in lastActiveInsights if insight.SourceModel == 'ETF' and insight.Direction != InsightDirection.Flat]
            count -= len(etfInsightSymbols)
            if count >= self.numberOfStocksValue + self.numberOfStocksMomentum:
                etfWeight = 0
                self.etfInvestingEnabled = False
            if len(etfInsightSymbols) == 0:
                return targets
            if self.etfInvestingEnabled:
                leverage = max(1, algorithm.UniverseSettings.Leverage)
                currentEtfAllocation = sum([holding.AbsoluteHoldingsValue for symbol,holding in algorithm.Portfolio.items() if symbol in etfInsightSymbols]) \
                                        /algorithm.Portfolio.TotalPortfolioValue 
                if (currentEtfAllocation + residualBuyingPower > self.minPortfolioBufferToEnableEtfInvesting):
                    etfWeight = (currentEtfAllocation/leverage + residualBuyingPower)/len(etfInsightSymbols)
                else:
                    etfWeight = 0
                    self.etfInvestingEnabled = False
                
            for insight in lastActiveInsights:
                if insight.SourceModel == 'ETF' and insight.Symbol not in self.symbolsToIgnore:
                    target = PortfolioTarget.Percent(algorithm, insight.Symbol, etfWeight*insight.Direction)
                    if target is None:
                        self.symbolsToIgnore.add(insight.Symbol)
                        continue
                    targets.append(target)
        
        return targets
        
     
            
 
    
    def OnSecuritiesChanged(self, algorithm, changes):
        if self.scheduledEvent is None:
            self.scheduledEvent = algorithm.Schedule.On(algorithm.DateRules.EveryDay(), algorithm.TimeRules.Midnight, functools.partial(self.UpdateCharts, algorithm))
        for security in changes.RemovedSecurities:
            symbol = security.Symbol
            if symbol.Equals(self.vix):
                continue
            self.removedSymbols.append(symbol)
            if symbol in self.symbolsToIgnore:
                self.symbolsToIgnore.remove(symbol)
        
        for security in changes.AddedSecurities:
            if security.Symbol.Equals(self.vix) and self.riskModel is None:
                self.riskModel = RiskModel(algorithm, security, self.momentumBudget, self.momentumBudgetVolCond, self.numberOfStocksMomentum, self.numberOfStocksMomentumVolCond,
                                                                self.valueBudget, self.valueBudgetVolCond, self.numberOfStocksValue, self.numberOfStocksValueVolCond,
                                                                self.riskManagementEnabled, self.maxDrawdown, self.maxVIX, self.numberOfTradingDaysBeforeReset)
        
    

        
    def UpdateCharts(self, algorithm):
        activeInsights = self.insightCollection.GetActiveInsights(algorithm.UtcTime)
        holdingsCountBySourceModel = defaultdict(int)
        for k,g in GroupBy(activeInsights, key = lambda insight: insight.SourceModel):
            holdingsCountBySourceModel[k] = len({x.Symbol for x in g if x.Direction != InsightDirection.Flat and algorithm.Portfolio[x.Symbol].Invested})
        for sourceModel in ['ETF', 'Momentum', 'Value']:
            algorithm.Plot('Number of Stocks', sourceModel, int(holdingsCountBySourceModel[sourceModel]))
        totalCount = len([holding for _,holding in algorithm.Portfolio.items() if holding.Invested])
        algorithm.Plot('Number of Stocks', 'Total', totalCount)
        
    

        
class RiskModel:
    
    def __init__(self, algorithm, security, 
                       momentumBudget, momentumBudgetVolCond, numberOfStocksMomentum, numberOfStocksMomentumVolCond,
                       valueBudget, valueBudgetVolCond, numberOfStocksValue, numberOfStocksValueVolCond,
                       riskManagementEnabled, maxDrawdown, maxVIX, numberOfTradingDaysBeforeReset):
                           
        self.algorithm = algorithm
        self.Security = security
        self.Symbol = security.Symbol
        
        self.portfolioHigh = algorithm.Portfolio.TotalPortfolioValue
        self.SafeMode = False
        self.safeModeExpiryTime = datetime.min
        self.momentumBudget = momentumBudget
        self.momentumBudgetDefault = momentumBudget
        self.momentumBudgetVolCond = momentumBudgetVolCond
        self.numberOfStocksMomentum = numberOfStocksMomentum
        self.numberOfStocksMomentumDefault = numberOfStocksMomentum
        self.numberOfStocksMomentumVolCond = numberOfStocksMomentumVolCond
        self.valueBudget = valueBudget
        self.valueBudgetDefault = valueBudget
        self.valueBudgetVolCond = valueBudgetVolCond
        self.numberOfStocksValue = numberOfStocksValue
        self.numberOfStocksValueDefault = numberOfStocksValue
        self.numberOfStocksValueVolCond = numberOfStocksValueVolCond
        self.numberOfStocksBySourceModel = {'Momentum': numberOfStocksMomentum, 'Value': numberOfStocksValue}
        self.riskManagementEnabled = riskManagementEnabled
        self.maxDrawdown = -abs(maxDrawdown)
        self.maxVIX = maxVIX
        self.numberOfTradingDaysBeforeReset = timedelta(days=numberOfTradingDaysBeforeReset)
        
        self.budgetBySourceModel = defaultdict(float)
        self.budgetBySourceModel.update({'Momentum':momentumBudget, 'Value':valueBudget})
        self.hour = None
        
        algorithm.Schedule.On(algorithm.DateRules.EveryDay(self.Symbol), algorithm.TimeRules.Every(timedelta(hours=1)), self.Update)
        
    
    
    @property
    def BudgetBySourceModel(self):
        if not self.riskManagementEnabled:
            return self.budgetBySourceModel
        self.budgetBySourceModel.update({"Momentum":self.momentumBudget, "Value":self.valueBudget})
        return self.budgetBySourceModel
    
    @property
    def NumberOfStocksBySourceModel(self):
        if not self.riskManagementEnabled:
            return self.numberOfStocksBySourceModel
        self.numberOfStocksBySourceModel.update({'Momentum':self.numberOfStocksMomentum, 'Value':self.numberOfStocksValue})
        return self.numberOfStocksBySourceModel

    def Update(self):
        
        if not self.SafeMode and self.algorithm.Time > self.safeModeExpiryTime:
            self.momentumBudget = self.momentumBudgetDefault
            self.valueBudget = self.valueBudgetDefault
            self.numberOfStocksMomentum = self.numberOfStocksMomentumDefault
            self.numberOfStocksValue = self.numberOfStocksValueDefault
            
        
            self.SafeMode = self.Security.Price > self.maxVIX and self.CurrentDrawdown < self.maxDrawdown
            if self.SafeMode:
                self.momentumBudget = self.momentumBudgetVolCond
                self.valueBudget = self.valueBudgetVolCond
                self.numberOfStocksMomentum = self.numberOfStocksMomentumVolCond
                self.numberOfStocksValue = self.numberOfStocksValueVolCond
                self.algorithm.Debug(f"{self.algorithm.Time} | Volatility Condition triggered!\nAdjusting Portfolio Targets and permitted Number of Stocks for each Alpha Model.")
        else:
            if self.SafeMode and self.Security.Price < self.maxVIX and self.CurrentDrawdown > self.maxDrawdown:
                self.safeModeExpiryTime = self.algorithm.Time + self.numberOfTradingDaysBeforeReset
                self.SafeMode = False
                self.algorithm.Debug(f"{self.algorithm.Time} | Volatility Condition removed!\nKeep Risk Management Settings unchanged until {self.safeModeExpiryTime}.")
                
        
            
    @property
    def CurrentDrawdown(self):
        currentTPV = self.algorithm.Portfolio.TotalPortfolioValue
        if currentTPV > self.portfolioHigh:
            self.portfolioHigh = currentTPV
        return currentTPV/self.portfolioHigh - 1
        
        
        
            
  
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel




class CustomUniverseSelectionModel(FundamentalUniverseSelectionModel):
    
    def __init__(self, maxNumberOfSymbolsCoarse, maxNumberOfSymbolsFine, etfTickers):
        self.nextSelectionUpdate = datetime.min
        self.maxNumberOfSymbolsCoarse = maxNumberOfSymbolsCoarse
        self.maxNumberOfSymbolsFine = maxNumberOfSymbolsFine
        self.etfSymbols = [Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in etfTickers]
        self.vix = Symbol.Create("VIX", SecurityType.Index, Market.USA)
        self.IsInitRun = True
        super().__init__(True, None)
    
    
    def SelectCoarse(self, algorithm, coarse):
        if algorithm.Time < self.nextSelectionUpdate:
            return Universe.Unchanged
        TPV = algorithm.Portfolio.TotalPortfolioValue
        coarseFiltered = [c for c in coarse if (c.HasFundamentalData and (c.Price < TPV/100) and (algorithm.Time - c.Symbol.ID.Date).days > 365)]
        sortedByDollarVolume = sorted(coarseFiltered, key = lambda c: c.DollarVolume, reverse = False)
        return [c.Symbol for c in sortedByDollarVolume][:self.maxNumberOfSymbolsCoarse]

    
    
    
    def SelectFine(self, algorithm, fine):
        filteredFine = [f for f in fine if (f.CompanyReference.CountryId in {"USA"}
                                            and f.CompanyReference.PrimaryExchangeID in {"NYS", "NAS"}
                                            and (algorithm.Time - f.SecurityReference.IPODate).days > 360
                                            and f.CompanyReference.IndustryTemplateCode not in {"I", "B"}
                                            and 1e8 < f.MarketCap #< 1e10 
                                            and (f.FinancialStatements.BalanceSheet.TotalDebt.Value - f.FinancialStatements.BalanceSheet.CashAndCashEquivalents.Value 
                                                   <  f.FinancialStatements.BalanceSheet.TangibleBookValue.Value*1.25 ))]
                                                # Note: .Value refers to the default period field which is "TwelveMonths". You can also use "ThreeMonths".
                                            
                                            
        sortedByMarketCap = sorted(filteredFine, key = lambda f: f.MarketCap, reverse=False)
        self.nextSelectionUpdate = Expiry.EndOfMonth(algorithm.Time) - timedelta(days=3)
        selection = [f.Symbol for f in sortedByMarketCap][:self.maxNumberOfSymbolsFine] + self.etfSymbols + [self.vix] + self.CurrentHoldings(algorithm)
        selection.extend(self.LoadSymbolsFromObjectStore(algorithm))
        return  selection
    
   
        
    def LoadSymbolsFromObjectStore(self, algorithm):
        # load symbols from the object store which insights haven't expired yet to ensure we have a data feed for those symbols
        if not (algorithm.LiveMode and self.IsInitRun):
            return []
        suffix = 'InsightCollection'
        keys = [x.Key for x in algorithm.ObjectStore if x.Key.endswith(suffix)]
        dfList = []
        symbols = []
        for key in keys:
            storedInsightsDf = pd.read_json(algorithm.ObjectStore.Read(key), orient='split')
            storedInsightsDf.loc[:, 'Period'] = pd.to_timedelta(storedInsightsDf.Period, unit='ms')
            storedInsightsDf.loc[:, 'GeneratedTimeUtc'] = pd.to_datetime(storedInsightsDf.GeneratedTimeUtc, unit='ms', utc=True)
            storedInsightsDf.loc[:, 'CloseTimeUtc'] = pd.to_datetime(storedInsightsDf.CloseTimeUtc, unit='ms', utc=True)
            filteredInsightsDf = storedInsightsDf.loc[(storedInsightsDf.SourceModel.eq(key.split(suffix)[0]) 
                                                        & storedInsightsDf.CloseTimeUtc.gt(algorithm.UtcTime) 
                                                        & storedInsightsDf.Direction.eq(1) 
                                                        & storedInsightsDf.GeneratedTimeUtc.lt(algorithm.UtcTime))]
            if not filteredInsightsDf.empty:
                dfList.append(filteredInsightsDf)
                
        if len(dfList) > 0:
            df = pd.concat(dfList)
            symbols = df.Symbol.apply(SymbolCache.GetSymbol).unique().tolist()
        self.IsInitRun = False
        return symbols
        
        
            
    def CurrentHoldings(self, algorithm):
        return [security.Key for security in algorithm.ActiveSecurities if security.Value.Holdings.Invested]