Overall Statistics |
Total Trades 3434 Average Win 0.32% Average Loss -0.32% Compounding Annual Return 7.795% Drawdown 33.400% Expectancy 0.278 Net Profit 379.303% Sharpe Ratio 0.609 Probabilistic Sharpe Ratio 1.917% Loss Rate 35% Win Rate 65% Profit-Loss Ratio 0.97 Alpha 0.074 Beta -0.047 Annual Standard Deviation 0.117 Annual Variance 0.014 Information Ratio 0.012 Tracking Error 0.219 Treynor Ratio -1.501 Total Fees $6008.52 |
# https://quantpedia.com/Screener/Details/7 # The investment universe consists of global large cap stocks (or US large cap stocks). # At the end of the each month, sort large dollar volume traded stocks, # then sort them by total yield and ROE, then rank them by the last 100 days volatility. # Go long 10 stocks with the lowest volatility. from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp class ShortTermReversalAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) # Set Start Date #self.SetEndDate(2011, 1, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.lookback = 100 self.coarselist = 200 self.finelist = 75 self.stocks = 11 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.symbolDataDict = {} self.AddEquity("SPY", Resolution.Daily) self.AddEquity("UST", Resolution.Daily) # 7-10 yr treasury 2x start 2/1/2010 self.Schedule.On(self.DateRules.MonthEnd("SPY"),self.TimeRules.AfterMarketOpen("SPY", 30), self.rebalance) def CoarseSelectionFunction(self, coarse): selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 10)] # rank the stocks by dollar volume filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [ x.Symbol for x in filtered[:self.coarselist]] def FineSelectionFunction(self, fine): #top = sorted(fine, key = lambda x: x.ValuationRatios.TotalYield, reverse=True) #top = sorted(fine, key = lambda x: x.EarningReports.DividendPerShare.Value, reverse=True) top = sorted(fine, key=lambda x: x.ValuationRatios.TotalYield and x.OperationRatios.ROE.Value, reverse=True) return [x.Symbol for x in top[:self.finelist]] def rebalance(self): sorted_symbolData = sorted(self.symbolDataDict, key=lambda x: self.symbolDataDict[x].Volatility()) # pick the stocks with the lowest volatility long_stocks = sorted_symbolData[:self.stocks] stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested] # liquidate stocks not in the list for i in stocks_invested: if i not in long_stocks: self.Liquidate(i) # long stocks with the lowest volatility for i in long_stocks: self.SetHoldings(i, 1/self.stocks) self.SetHoldings('UST', 0) invested = [ x.Symbol.Value for x in self.Portfolio.Values if x.Invested ] # create list of current positions self.Log("invested: " + str(invested)) # print current positions def OnData(self, data): for symbol, symbolData in self.symbolDataDict.items(): # update the indicator value for newly added securities if symbol not in self.addedSymbols: symbolData.Price.Add(IndicatorDataPoint(symbol, self.Time, self.Securities[symbol].Close)) self.addedSymbols = [] self.removedSymbols = [] def OnSecuritiesChanged(self, changes): # clean up data for removed securities self.removedSymbols = [x.Symbol for x in changes.RemovedSecurities] for removed in changes.RemovedSecurities: symbolData = self.symbolDataDict.pop(removed.Symbol, None) # warm up the indicator with history price for newly added securities self.addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol.Value != "SPY"] history = self.History(self.addedSymbols, self.lookback+1, Resolution.Daily) for symbol in self.addedSymbols: if symbol not in self.symbolDataDict.keys(): symbolData = SymbolData(symbol, self.lookback) self.symbolDataDict[symbol] = symbolData if str(symbol) in history.index: symbolData.WarmUpIndicator(history.loc[str(symbol)]) class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback): self.symbol = symbol self.Price = RollingWindow[IndicatorDataPoint](lookback) def WarmUpIndicator(self, history): # warm up the RateOfChange indicator with the history request for tuple in history.itertuples(): item = IndicatorDataPoint(self.symbol, tuple.Index, float(tuple.close)) self.Price.Add(item) def Volatility(self): #data = [float(x.Value) for x in self.Price] #return np.std(data) data = [float(x.Value) for x in self.Price] # Make it DataFrame: df = pd.DataFrame(data) # Get returns in percentage: df = df.pct_change() # Obtain standard deviation: vol = df.std() # Get last value last_var = vol.iloc[-1] # Cast it as float just in case: return float(last_var)