Overall Statistics |
Total Orders 1794 Average Win 0.13% Average Loss -0.12% Compounding Annual Return 37.728% Drawdown 12.800% Expectancy 0.496 Start Equity 100000 End Equity 174213.85 Net Profit 74.214% Sharpe Ratio 1.596 Sortino Ratio 1.963 Probabilistic Sharpe Ratio 89.183% Loss Rate 28% Win Rate 72% Profit-Loss Ratio 1.07 Alpha 0.053 Beta 1.097 Annual Standard Deviation 0.128 Annual Variance 0.016 Information Ratio 1.261 Tracking Error 0.052 Treynor Ratio 0.187 Total Fees $2044.56 Estimated Strategy Capacity $4000000.00 Lowest Capacity Asset AADR UOFRJAZTL0TH Portfolio Turnover 5.95% |
from AlgorithmImports import * from hmmlearn import hmm class HMMRegimeDetection(QCAlgorithm): def initialize(self): self.set_start_date(2023, 1, 1) self.add_universe(lambda fundamental: [f.symbol for f in sorted(fundamental, key=lambda x: x.market_cap, reverse=True)[:10]]) self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(timedelta(minutes=5))) self.settings.rebalance_portfolio_on_insight_changes = False self.set_warm_up(timedelta(3)) def on_securities_changed(self, changes): for added in changes.added_securities: added.roc = RateOfChange(1) added.roc.window.size = self.get_parameter("roc_window", 150) added.model = hmm.GaussianHMM(n_components=2, n_iter=100, random_state=100) added.model_month = -1 added.consolidator = TradeBarConsolidator(timedelta(minutes=self.get_parameter("bar_size", 5))) added.consolidator.data_consolidated += self.on_consolidated self.subscription_manager.add_consolidator(added.symbol, added.consolidator) def on_consolidated(self, _, bar): security = self.securities[bar.symbol] security.roc.update(bar.end_time, bar.price) if security.roc.window.is_ready: if security.model_month != bar.end_time.month: security.model.fit(np.array([point.value for point in security.roc.window])[::-1].reshape(-1, 1)) security.model_month = bar.end_time.month post_prob = security.model.predict_proba(np.array([security.roc.current.value]).reshape(1, -1)).flatten() direction = InsightDirection.UP if post_prob[-1] > post_prob [0] else InsightDirection.DOWN self.emit_insights(Insight.price(bar.symbol, timedelta(minutes=self.get_parameter("bar_size", 5)), direction))