Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.848 Tracking Error 0.223 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# QC DEMA Delayed from AlgorithmImports import * STOCK = 'SPY'; PERIOD = 50; DELAY = 10; class DemaDelayed(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 31) self.SetEndDate(2021, 10, 20) self.SetWarmUp(5*PERIOD + DELAY, Resolution.Daily) self.stock = self.AddEquity(STOCK, Resolution.Daily).Symbol self.dema = self.DEMA(self.stock, PERIOD, Resolution.Daily) self.dema_delayed = IndicatorExtensions.Of(Delay(DELAY), self.dema) def OnData(self, data): if self.IsWarmingUp or not (self.dema.IsReady and self.dema_delayed.IsReady): return self.Plot("Indicator","DEMA", self.dema.Current.Value) self.Plot("Indicator", "DEMA_delayed", self.dema_delayed.Current.Value)