Overall Statistics |
Total Trades 60 Average Win 42.38% Average Loss -2.89% Compounding Annual Return 517.514% Drawdown 26.900% Expectancy 3.172 Net Profit 615.845% Sharpe Ratio 2.361 Loss Rate 73% Win Rate 27% Profit-Loss Ratio 14.64 Alpha 1.562 Beta -0.048 Annual Standard Deviation 0.659 Annual Variance 0.434 Information Ratio 2.149 Tracking Error 0.662 Treynor Ratio -32.296 Total Fees $713.95 |
# WarmCryptoCrossover v0.03 (Py) from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from datetime import datetime import decimal as d import numpy as np class WarmupAlgorithm(QCAlgorithm): def Initialize(self): # define email address for buy/sell notifications # please change prior to Live deploy self.email_address = 'test@test.com' self.SetStartDate(2017,4,1) #Set Start Date self.SetEndDate(2017,11,5) #Set End Date self.SetCash(1000) #Set Strategy Cash # define crypto we want to trade on # ETHUSD or LTCUSD or BTCUSD self.target_crypto = "ETHUSD" # Set brokerage to GDAX for cryptos self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) # Set crypto and time resolution self.AddCrypto(self.target_crypto, Resolution.Hour) # convience reference for price self.price = self.Securities[self.target_crypto].Price # Define windows in days for EMA # 168 hours in a week, 1440 minutes in a day very_fast_period = 2 fast_period = 12 slow_period = (fast_period * 10) medium_period = ((slow_period - fast_period) / 2) + fast_period very_slow_period = (slow_period * 3) daily_period = 24 weekly_period = (daily_period * 7) monthly_period = (weekly_period * 30) # Request warmup data self.SetWarmup(slow_period + 1) # Define a fast and slow exponential moving average self.fast = self.EMA(self.target_crypto, fast_period) self.medium = self.EMA(self.target_crypto, medium_period) self.slow = self.EMA(self.target_crypto, slow_period) # Plot EMAs self.PlotIndicator( self.target_crypto, self.fast, self.slow ) # Plot MOM self.mom = self.MOM(self.target_crypto, (daily_period * 3)) self.PlotIndicator( self.target_crypto, self.mom ) # Plot RSI self.rsi_weekly = self.RSI(self.target_crypto, (daily_period * 3)) self.PlotIndicator( self.target_crypto, self.rsi_weekly ) # Plot Ultimate Oscilator self.ultosc = self.ULTOSC( self.target_crypto, very_fast_period, daily_period, weekly_period ) self.PlotIndicator( self.target_crypto, self.ultosc, ) self.first = True def OnData(self, data): if self.first and not self.IsWarmingUp: self.first = False self.Log("Fast: {0}".format(self.fast.Samples)) self.Log("Medium: {0}".format(self.medium.Samples)) self.Log("Slow: {0}".format(self.slow.Samples)) # Determine holdings (# of units held) and price of unit holdings = self.Portfolio[self.target_crypto].Quantity # define a small tolerance on our checks to avoid bouncing if holdings > 0: tolerance = 0.0001 else: tolerance = 0.0001 # we only want to go long if we're currently short or flat if holdings <= 0: # if the fast is greater than the slow, we'll go long if self.fast.Current.Value > self.slow.Current.Value * d.Decimal(1 + tolerance): self.SetHoldings(self.target_crypto, 1) notify_message = "BUY >> {0} at {1}/unit".format(self.target_crypto,self.price) self.Log(notify_message) # Email notification of buy (only in Live environment) #self.Notify( # address=self.email_address, # subject='QuantConnect Algo Buy', # message=notify_message #) # we only want to liquidate if we're currently long # if the fast is less than the slow we'll liquidate our long if holdings > 0: if self.fast.Current.Value < self.slow.Current.Value * d.Decimal(1 - tolerance): self.SetHoldings(self.target_crypto, 0) notify_message = "Sell >> {0} at {1}/unit".format(self.target_crypto,self.price) self.Log(notify_message) # Email notification of sell (only in Live environment) #self.Notify( # address=self.email_address, # subject='QuantConnect Algo Sell', # message=notify_message #)