Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports from AlgorithmImports import * import time # endregion class FetchTopGappers(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 5, 11) # Set Start Date self.SetEndDate(2021, 5, 11) self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", resolution=Resolution.Minute, extendedMarketHours=True) # Add universe self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.ExtendedMarketHours = True self.UniverseSettings.FillForward = True self.AddUniverse(self.CoarseUniverseSelection) self.AddUniverseSelection(ScheduledUniverseSelectionModel( self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", -5), self.ScheduledSymbolSelect)) self.cur_time = time.time() self.num_gappers = 5 def OnData(self, data: Slice): if (self.Time.hour == 8 and self.Time.minute == 31): self.Debug(f"Time: {self.Time} | Length of slice: {len(data.Bars.Values)}") if (self.Time.hour == 9 and self.Time.minute == 31): self.Debug(f"Time: {self.Time} | Length of slice: {len(data.Bars.Values)}") def CoarseUniverseSelection(self, coarse): self.all_relevant_stocks = {} self.Debug(f"In coarse at {self.Time}, time: {int(time.time() - self.cur_time)} seconds") self.cur_time = time.time() for stock in coarse: if (stock.Symbol.Value == "SPY"): continue if (stock.AdjustedPrice > 1): self.all_relevant_stocks[str(stock.Symbol)] = {"symbol": stock.Symbol, "last_close": stock.Price} return [] def calc_gap(self, row): symbol_data = self.all_relevant_stocks[row.name] last_close = symbol_data["last_close"] cur_price = row['close'] gap = ((cur_price * 100) / last_close) - 100 return {"ticker": symbol_data["symbol"].Value, "gap": gap, "symbol": symbol_data["symbol"], "last_close": last_close, "cur_price": cur_price} def ScheduledSymbolSelect(self, date): min_history = self.History( tickers=[x["symbol"] for x in self.all_relevant_stocks.values()], start=self.Time - timedelta(minutes=1), end=self.Time, resolution=Resolution.Minute, fillForward=True, extendedMarket=True, dataNormalizationMode=DataNormalizationMode.Adjusted, ) if (min_history.empty): return [] # Drop timestamp level min_history = min_history.droplevel(1) # Calculate gappers gappers = list(min_history.apply(self.calc_gap, axis=1)) gappers = sorted(gappers, key=lambda d: d['gap'], reverse=True) self.top_gappers = gappers[:self.num_gappers] self.Debug(f"{self.top_gappers[0]}") self.Debug(f"{self.top_gappers[1]}") self.selected_symbols = [stock["symbol"] for stock in self.top_gappers] return self.selected_symbols