Overall Statistics |
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000.00 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 1.653 Tracking Error 0.049 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports from AlgorithmImports import * # endregion class VirtualBlackParrot(QCAlgorithm): def initialize(self): self.set_start_date(2024, 6, 1) self.set_cash(100000) self.set_brokerage_model(BrokerageName.OANDA_BROKERAGE, AccountType.MARGIN) self.forex_tickers = ["EURUSD"] self.init = {} for ticker in self.forex_tickers: self.add_forex(ticker, Resolution.MINUTE, market=Market.OANDA) h4_consolidator = QuoteBarConsolidator(self._custom_forex_h4) h4_consolidator.data_consolidated += self.four_hour_consolidated self.subscription_manager.add_consolidator(ticker, h4_consolidator) self.init[ticker] = False self.set_warmup(timedelta(hours=120)) def _custom_forex_h4(self, dt): if all([value for value in self.init.values()]): # after the first bar, consolidate every 4 hours return CalendarInfo(dt, timedelta(hours=4)) else: # first bar will consolidate at current day 17:00 return CalendarInfo(dt, dt.replace(hour=17, minute=0, second=0) - dt) def four_hour_consolidated(self, sender, bar): ticker = bar.symbol.value self.init[ticker] = True if self.is_warming_up: return self.debug(f"{self.time} - {ticker} H4 Consolidated. EndTime: {bar.EndTime}") def on_data(self, data: Slice): if self.is_warming_up: return return