Overall Statistics |
Total Trades 2 Average Win 0% Average Loss 0% Compounding Annual Return 50.056% Drawdown 1.500% Expectancy 0 Net Profit 1.644% Sharpe Ratio 5.134 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 1.283 Beta -51.597 Annual Standard Deviation 0.073 Annual Variance 0.005 Information Ratio 4.865 Tracking Error 0.074 Treynor Ratio -0.007 Total Fees $29.00 |
import numpy as np import pandas as pd class BootCampTask(QCAlgorithm): def Initialize(self): self.SetCash(1000000) # Start and end dates for the backtest. self.SetStartDate(2017,6,1) self.SetEndDate(2017,6,15) # Manually Select Data self.spy = self.AddEquity("SPY", Resolution.Minute) self.iwm = self.AddEquity("IWM", Resolution.Minute) # Schedule the rebalance function self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 30), Action(self.rebalance)) def OnData(self, data): pass def rebalance(self): # Do something here if not self.Securities["SPY"].Invested: self.SetHoldings("SPY", 0.5) if not self.Securities["IWM"].Invested: self.SetHoldings("IWM", 0.5) invested = [ x.Symbol.Value for x in self.Portfolio.Values if x.Invested ] self.Log("Invested: " + str(len(invested)) + ': '+ str(invested))