Overall Statistics |
Total Trades 11628 Average Win 0.04% Average Loss -0.03% Compounding Annual Return 21.995% Drawdown 6.400% Expectancy 0.108 Net Profit 22.261% Sharpe Ratio 1.575 Probabilistic Sharpe Ratio 72.245% Loss Rate 48% Win Rate 52% Profit-Loss Ratio 1.12 Alpha 0.149 Beta 0.086 Annual Standard Deviation 0.097 Annual Variance 0.009 Information Ratio 0.635 Tracking Error 0.161 Treynor Ratio 1.77 Total Fees $29853.86 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Logging") AddReference("QuantConnect.Common") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Logging import Log from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * from datetime import timedelta from enum import Enum class RsiAlphaModel(AlphaModel): '''Uses Wilder's RSI to create insights. Using default settings, a cross over below 30 or above 70 will trigger a new insight.''' def __init__(self, period = 14, resolution = Resolution.Daily): '''Initializes a new instance of the RsiAlphaModel class Args: period: The RSI indicator period''' self.period = period self.resolution = resolution self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period) self.symbolDataBySymbol ={} self.lowcutoff = 30.0 self.highcutoff = 70.0 self.buffer = 5.0 resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): rsi = symbolData.RSI previous_state = symbolData.State state = self.GetState(rsi, previous_state) if state != previous_state and rsi.IsReady: if state == State.TrippedLow: insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up, 0.01*(self.lowcutoff-rsi.Current.Value)/self.lowcutoff)) if state == State.TrippedHigh: insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down, 0.01*(rsi.Current.Value-self.highcutoff)/(100-self.highcutoff))) symbolData.State = state return insights def OnSecuritiesChanged(self, algorithm, changes): '''Cleans out old security data and initializes the RSI for any newly added securities. Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities symbols = [ x.Symbol for x in changes.RemovedSecurities ] if len(symbols) > 0: for subscription in algorithm.SubscriptionManager.Subscriptions: if subscription.Symbol in symbols: self.symbolDataBySymbol.pop(subscription.Symbol, None) subscription.Consolidators.Clear() # initialize data for added securities addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol] if len(addedSymbols) == 0: return history = algorithm.History(addedSymbols, self.period, self.resolution) for symbol in addedSymbols: rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution) if not history.empty: ticker = SymbolCache.GetTicker(symbol) if ticker not in history.index.levels[0]: Log.Trace(f'RsiAlphaModel.OnSecuritiesChanged: {ticker} not found in history data frame.') continue for tuple in history.loc[ticker].itertuples(): rsi.Update(tuple.Index, tuple.close) self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi) def GetState(self, rsi, previous): ''' Determines the new state. This is basically cross-over detection logic that includes considerations for bouncing using the configured bounce tolerance.''' if rsi.Current.Value > self.highcutoff : return State.TrippedHigh if rsi.Current.Value < self.lowcutoff : return State.TrippedLow if previous == State.TrippedLow: if rsi.Current.Value > (self.lowcutoff+self.buffer): return State.Middle if previous == State.TrippedHigh: if rsi.Current.Value < (self.highcutoff-self.buffer): return State.Middle return previous class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, rsi): self.Symbol = symbol self.RSI = rsi self.State = State.Middle class State(Enum): '''Defines the state. This is used to prevent signal spamming and aid in bounce detection.''' TrippedLow = 0 Middle = 1 TrippedHigh = 2
class PanicToExcuberanceAlphaModel(AlphaModel): def __init__(self, algorithm, fastPeriod = 5, slowPeriod = 252, resolution = Resolution.Daily): # Set resolution for EMA Indicator self.resolution = resolution self.algorithm = algorithm self.slow = fastPeriod self.fast = slowPeriod # Add custom data from Quandl self.yearlyHighs = algorithm.AddData(QuandlData, 'URC/NASDAQ_52W_HI',self.resolution).Symbol self.yearlyLows = algorithm.AddData(QuandlData, 'URC/NASDAQ_52W_LOW', self.resolution).Symbol # Add indicators using custom data self.highema = algorithm.EMA(self.yearlyHighs, self.fast, self.resolution) self.highmax = algorithm.MAX(self.yearlyHighs, self.slow, self.resolution) self.highmin = algorithm.MIN(self.yearlyHighs, self.slow, self.resolution) self.lowema = algorithm.EMA(self.yearlyLows, self.fast, self.resolution) self.lowmax = algorithm.MAX(self.yearlyLows, self.slow, self.resolution) self.lowmin = algorithm.MIN(self.yearlyLows, self.slow, self.resolution) resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) # Set the prediction period self.period = timedelta(days=30) def Update(self, algorithm, data): insights = [] # Return if no data if not (data.ContainsKey(self.yearlyHighs) or data.ContainsKey(self.yearlyLows)): return insights # Return if indicators are not ready if not (self.highmin.IsReady or self.highmax.IsReady): return insights if not (self.lowmin.IsReady or self.lowmax.IsReady): return insights # Calculate the numerator of the custom indicator highdelta = self.highmax.Current.Value - self.highmin.Current.Value lowdelta = self.lowmax.Current.Value - self.lowmin.Current.Value # Calculate the denominator of the custom indicator highscaled = self.highema.Current.Value - self.highmin.Current.Value lowscaled = self.lowema.Current.Value - self.lowmin.Current.Value # Calculate the value of the custom indicator highrank = highscaled / highdelta lowrank = lowscaled / lowdelta # Plot the custom indicator # Emit insight on SPY if the indicator value exceeds 0.5 if highrank > 0.50: insights.append(Insight.Price("SPY", self.period, InsightDirection.Up, 0.01)) # Emit insight on SPY if the indicator value exceeds 0.5 if lowrank < 0.50: insights.append(Insight.Price("SPY", self.period, InsightDirection.Down, 0.01)) return insights class QuandlData(PythonQuandl): # Custom data Quandl link: https://www.quandl.com/data/URC/NASDAQ_52W_HI-NASDAQ-Number-of-Stocks-Making-52-Week-Highs def __init__(self): ## Retrieve the data from the the Quandl object, specifying the data field used on Quandl self.ValueColumnName = "NUMBERS OF STOCKS" # More URC market data can be found at Quandl # https://www.quandl.com/data/URC-Unicorn-Research-Corporation
class FederalInterestRateAlphaModel(AlphaModel): def __init__(self, algorithm, insightDuration = 30): ## Add Quandl data for the Federal Interest Rate self.fedRate = algorithm.AddData(QuandlFedRateColumns, 'FRED/FEDFUNDS', Resolution.Daily).Symbol self.insightDuration = TimeSpan.FromDays(insightDuration) def Update(self, algorithm, data): insights = [] ## Check for all Quandl Symbols in current data Slice if not data.ContainsKey(self.fedRate): return [] ## The Federal Interest Rate (Federal Funds Rate) is one of the most important elements ## of the US economy and any change has profound effects across all markets, but especially ## in debt-based securities, currencies, consumer spending, and a negative effect on equities ## whose companies primarily do business in international markets. The data is monthly, so ## Insight generation will not occur with a high frequency. ## Additional Federal Reserve data can be found at Quandl ## https://www.quandl.com/data/FRED-Federal-Reserve-Economic-Data ## Generate Insights here! return insights class QuandlFedRateColumns(PythonQuandl): def __init__(self): ## Rename the Quandl object column to the data we want, which is the 'Value' column ## of the CSV that our API call returns self.ValueColumnName = "Value"
from datetime import timedelta from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel from MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity from PanicToExcuberanceAlphaModel import PanicToExcuberanceAlphaModel from MacdAlphaModel import MacdAlphaModel from RsiAlphaModel import RsiAlphaModel from TingoAlphaModel import TingoAlphaModel class LiquidValueStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2015, 8, 17) self.SetEndDate(2016, 8, 17) # No need to set End Date as the final submission will be tested # up until the review date # Set $1m Strategy Cash to trade significant AUM self.SetCash(1000000) # Add a relevant benchmark, with the default being SPY self.AddEquity('SPY') self.SetBenchmark('SPY') # On the Average Cross Chart we want 2 series, slow MA and fast MA # avgCross = Chart("Rank") # avgCross.AddSeries(Series("High Rank", SeriesType.Line, 0)) # self.AddChart(avgCross) # Use the Alpha Streams Brokerage Model, developed in conjunction with # funds to model their actual fees, costs, etc. # Please do not add any additional reality modelling, such as Slippage, Fees, Buying Power, etc. self.SetBrokerageModel(AlphaStreamsBrokerageModel()) self.UniverseSettings.Resolution = Resolution.Hour self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x))) self.AddUniverseSelection(LiquidValueUniverseSelectionModel()) #1. Create and instance of the LongShortEYAlphaModel # self.AddAlpha(EmaCrossAlphaModel(resolution=Resolution.Hour)) self.AddAlpha(PanicToExcuberanceAlphaModel(self, resolution = Resolution.Daily)) # self.AddAlpha(FederalInterestRateAlphaModel(self)) self.AddAlpha(MacdAlphaModel(12, 26, 9, MovingAverageType.Simple, Resolution.Daily)) self.AddAlpha(RsiAlphaModel(10, Resolution.Daily)) self.AddAlpha(TingoAlphaModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.01)) self.SetExecution(ImmediateExecutionModel()) self.SetWarmUp(300, Resolution.Hour) class LiquidValueUniverseSelectionModel(FundamentalUniverseSelectionModel): def __init__(self): super().__init__(True, None, None) def SelectCoarse(self, algorithm, coarse): sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 10], key = lambda x: x.DollarVolume, reverse=True)[:300] # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if len(sortedByDollarVolume) == 0: return Universe.Unchanged # return the symbol objects our sorted collection return [f.Symbol for f in sortedByDollarVolume] def SelectFine(self, algorithm, fine): filtered_fine = [x for x in fine if x.OperationRatios.ROE.ThreeMonths and x.OperationRatios.ROIC.ThreeMonths and x.OperationRatios.OperationRevenueGrowth3MonthAvg.ThreeMonths and x.ValuationRatios.EarningYield and x.EarningReports.TotalDividendPerShare.ThreeMonths and x.ValuationRatios.PriceChange1M and x.ValuationRatios.BookValuePerShare and x.ValuationRatios.FCFYield and x.ValuationRatios.PERatio and x.CompanyReference.CountryId == "USA" and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"] and (algorithm.Time - x.SecurityReference.IPODate).days > 180 and x.MarketCap > 5e8] sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.OperationRatios.ROIC.OneYear, reverse=True) sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.OperationRatios.ROE.OneYear, reverse=True) sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.OperationRatios.OperationRevenueGrowth3MonthAvg.OneYear, reverse=True) sortedByfactor4 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.EarningYield, reverse=True) sortedByfactor5 = sorted(filtered_fine, key=lambda x: x.EarningReports.TotalDividendPerShare.Value, reverse=True) sortedByfactor6 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=False) sortedByfactor7 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True) sortedByfactor8 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) sortedByfactor9 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PERatio, reverse=False) num_stocks = len(filtered_fine) stock_dict = {} for i,ele in enumerate(sortedByfactor1): rank1 = i rank2 = sortedByfactor2.index(ele) rank3 = sortedByfactor3.index(ele) rank4 = sortedByfactor4.index(ele) rank5 = sortedByfactor5.index(ele) rank6 = sortedByfactor6.index(ele) rank7 = sortedByfactor7.index(ele) rank8 = sortedByfactor8.index(ele) rank9 = sortedByfactor9.index(ele) score = [rank1/num_stocks, rank2/num_stocks, rank9/num_stocks] score = sum(score) stock_dict[ele] = score self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False) sorted_symbol = [self.sorted_stock[i][0] for i in range(len(self.sorted_stock))] universe = sorted_symbol[:50] # algorithm.Log(f"Fine update") # for ff in universe: # algorithm.Log(f"{ff.Symbol} {stock_dict[ff]} roe {ff.OperationRatios.ROE.OneYear} roic {ff.OperationRatios.ROIC.OneYear} PErat {ff.ValuationRatios.PERatio}") if len(universe) == 0: return Universe.Unchanged return [f.Symbol for f in universe]
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import PortfolioTarget from QuantConnect.Algorithm.Framework.Risk import RiskManagementModel class MaximumDrawdownPercentPerSecurity(RiskManagementModel): '''Provides an implementation of IRiskManagementModel that limits the drawdown per holding to the specified percentage''' def __init__(self, maximumDrawdownPercent = 0.05): '''Initializes a new instance of the MaximumDrawdownPercentPerSecurity class Args: maximumDrawdownPercent: The maximum percentage drawdown allowed for any single security holding''' self.maximumDrawdownPercent = -abs(maximumDrawdownPercent) def ManageRisk(self, algorithm, targets): '''Manages the algorithm's risk at each time step Args: algorithm: The algorithm instance targets: The current portfolio targets to be assessed for risk''' targets = [] for kvp in algorithm.Securities: security = kvp.Value if not security.Invested: continue vol = security.Volume pnl = security.Holdings.UnrealizedProfitPercent if pnl < self.maximumDrawdownPercent: # liquidate targets.append(PortfolioTarget(security.Symbol, 0)) return targets
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * import numpy as np class EmaCrossAlphaModel(AlphaModel): '''Alpha model that uses an EMA cross to create insights''' def __init__(self, fastPeriod = 12, slowPeriod = 26, resolution = Resolution.Daily): '''Initializes a new instance of the EmaCrossAlphaModel class Args: fastPeriod: The fast EMA period slowPeriod: The slow EMA period''' self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] pos = 0 neg = 0.0 for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.Fast.IsReady and symbolData.Slow.IsReady: mag = (symbolData.Fast.Current.Value-symbolData.Slow.Current.Value )/\ np.mean([symbolData.Fast.Current.Value,symbolData.Slow.Current.Value]) if symbolData.FastIsOverSlow: if symbolData.Slow > symbolData.Fast: neg += -mag elif symbolData.SlowIsOverFast: if symbolData.Fast > symbolData.Slow: pos += mag tot = pos + neg for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.Fast.IsReady and symbolData.Slow.IsReady: mag = (symbolData.Fast.Current.Value-symbolData.Slow.Current.Value )/\ np.mean([symbolData.Fast.Current.Value,symbolData.Slow.Current.Value]) if symbolData.FastIsOverSlow: if symbolData.Slow > symbolData.Fast: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down, mag,-mag, "MyAlphaModel",-mag/tot)) elif symbolData.SlowIsOverFast: if symbolData.Fast > symbolData.Slow: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up, mag, mag, "MyAlphaModel",mag/tot)) symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: # create fast/slow EMAs symbolData = SymbolData(added) symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution) symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution) self.symbolDataBySymbol[added.Symbol] = symbolData else: # a security that was already initialized was re-added, reset the indicators symbolData.Fast.Reset() symbolData.Slow.Reset() class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, security): self.Security = security self.Symbol = security.Symbol self.Fast = None self.Slow = None # True if the fast is above the slow, otherwise false. # This is used to prevent emitting the same signal repeatedly self.FastIsOverSlow = False @property def SlowIsOverFast(self): return not self.FastIsOverSlow
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Logging") AddReference("QuantConnect.Common") from QuantConnect.Data.Custom.Tiingo import * from datetime import datetime, timedelta import numpy as np class TingoAlphaModel: def __init__(self): # the sample pool of word sentiments self.wordSentiment = { "bad": -0.5, "good": 0.5, "negative": -0.5, "great": 0.5, "growth": 0.5, "fail": -0.5, "failed": -0.5, "success": 0.5, "nailed": 0.5, "beat": 0.5, "missed": -0.5, "profitable": 0.5, "beneficial": 0.5, "right": 0.5, "positive": 0.5, "large":0.5, "attractive": 0.5, "sound": 0.5, "excellent": 0.5, "wrong": -0.5, "unproductive": -0.5, "lose": -0.5, "missing": -0.5, "mishandled": -0.5, "un_lucrative": -0.5, "up": 0.5, "down": -0.5, "unproductive": -0.5, "poor": -0.5, "wrong": -0.5, "worthwhile": 0.5, "lucrative": 0.5, "solid": 0.5 } self.day = -1 self.custom = {} def Update(self, algorithm, data): insights = [] # Run the model daily if algorithm.Time.day == self.day: return insights self.day = algorithm.Time.day weights = {} # Fetch the wordSentiment data for the active securities and trade on any for key, security in self.custom.items(): if not data.ContainsKey(security): continue news = data[security] if news is None: continue descriptionWords = news.Description.lower().split(" ") # Get the intersection words between sentiment sample pool and news description intersection = set(self.wordSentiment.keys()).intersection(descriptionWords) # Calculate the score sum of word sentiment sentimentSum = sum([self.wordSentiment[i] for i in intersection]) if sentimentSum > 0: weights[security.Underlying] = sentimentSum # Sort securities by sentiment ranking, count = min(10, len(weights)) if count == 0: return insights # Order the sentiment by value and select the top 10 sortedbyValue = sorted(weights.items(), key = lambda x:x[1], reverse=True) selected = {kv[0]:kv[1] for kv in sortedbyValue[:count]} # Populate the list of insights with the selected data where the sentiment sign is the direction and its value is the weight closeTimeLocal = Expiry.EndOfDay(algorithm.Time) for symbol, weight in selected.items(): insights.append(Insight.Price(symbol, closeTimeLocal, InsightDirection.Up, weight)) return insights def OnSecuritiesChanged(self, algorithm, changes): for security in changes.AddedSecurities: # Tiingo's News is for US Equities if security.Type == SecurityType.Equity: self.custom[security.Symbol] = (algorithm.AddData(TiingoNews, security.Symbol).Symbol) for security in changes.RemovedSecurities: # Tiingo's News is for US Equities if security.Type == SecurityType.Equity and security.Symbol in self.custom: data = self.custom.pop(security.Symbol,None)
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * class MacdAlphaModel(AlphaModel): '''Defines a custom alpha model that uses MACD crossovers. The MACD signal line is used to generate up/down insights if it's stronger than the bounce threshold. If the MACD signal is within the bounce threshold then a flat price insight is returned.''' def __init__(self, fastPeriod = 12, slowPeriod = 26, signalPeriod = 9, movingAverageType = MovingAverageType.Exponential, resolution = Resolution.Daily): ''' Initializes a new instance of the MacdAlphaModel class Args: fastPeriod: The MACD fast period slowPeriod: The MACD slow period</param> signalPeriod: The smoothing period for the MACD signal movingAverageType: The type of moving average to use in the MACD''' self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.signalPeriod = signalPeriod self.movingAverageType = movingAverageType self.resolution = resolution self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.bounceThresholdPercent = 0.01 self.symbolData = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) movingAverageTypeString = Extensions.GetEnumString(movingAverageType, MovingAverageType) self.Name = '{}({},{},{},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, signalPeriod, movingAverageTypeString, resolutionString) def Update(self, algorithm, data): ''' Determines an insight for each security based on it's current MACD signal Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for key, sd in self.symbolData.items(): if sd.Security.Price == 0: continue direction = InsightDirection.Flat normalized_signal = sd.MACD.Signal.Current.Value / sd.Security.Price if normalized_signal > self.bounceThresholdPercent: direction = InsightDirection.Up elif normalized_signal < -self.bounceThresholdPercent: direction = InsightDirection.Down # ignore signal for same direction as previous signal if direction == sd.PreviousDirection: continue insight = Insight.Price(sd.Security.Symbol, self.insightPeriod, direction,normalized_signal) sd.PreviousDirection = insight.Direction insights.append(insight) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed. This initializes the MACD for each added security and cleans up the indicator for each removed security. Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for added in changes.AddedSecurities: self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.fastPeriod, self.slowPeriod, self.signalPeriod, self.movingAverageType, self.resolution) for removed in changes.RemovedSecurities: data = self.symbolData.pop(removed.Symbol, None) if data is not None: # clean up our consolidator algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) class SymbolData: def __init__(self, algorithm, security, fastPeriod, slowPeriod, signalPeriod, movingAverageType, resolution): self.Security = security self.MACD = MovingAverageConvergenceDivergence(fastPeriod, slowPeriod, signalPeriod, movingAverageType) self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.MACD, self.Consolidator) self.PreviousDirection = None