Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.334 Tracking Error 0.139 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
from AlgorithmImports import * from QuantConnect.DataSource import * import numpy as np class ETFConstituentsDataAlgorithm(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2016, 1, 1) self.SetEndDate(2016, 5, 1) self.SetCash(100000) res = Resolution.Minute self.spy = self.AddEquity("SPY",res).Symbol self.emn = self.AddEquity("EMN",res).Symbol self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY",30), self.Rebalance) self.stock = Symbol.Create("EMN", SecurityType.Equity, Market.USA) def Rebalance(self) -> None: df = self.History(Fundamental, self.stock, 1000,Resolution.Daily).valuationratios.apply(lambda x: x.PBRatio) self.Debug(f'{self.Time} ratio = {df.iloc[-1]} --- {df.mean()}')