Overall Statistics |
Total Orders 12 Average Win 0.03% Average Loss 0% Compounding Annual Return 1.860% Drawdown 0.300% Expectancy 0 Start Equity 1000000 End Equity 1002985 Net Profit 0.298% Sharpe Ratio -4.438 Sortino Ratio -3.2 Probabilistic Sharpe Ratio 57.374% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha -0.043 Beta 0.046 Annual Standard Deviation 0.009 Annual Variance 0 Information Ratio -0.515 Tracking Error 0.104 Treynor Ratio -0.922 Total Fees $0.00 Estimated Strategy Capacity $1000.00 Lowest Capacity Asset SPXW 32OQC5DLYSW32|SPX 31 Portfolio Turnover 0.01% |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #region imports from AlgorithmImports import * #endregion import pandas_market_calendars as mcal from datetime import datetime, timedelta class IndexOptionIronCondorAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2025, 1, 1) self.set_end_date(2025, 2, 28) self.set_cash(1000000) index = self.add_index("SPX", Resolution.MINUTE).symbol option = self.add_index_option(index, "SPXW", Resolution.MINUTE) option.set_filter(lambda x: x.weeklys_only().strikes(-50, 50).expiration(5, 18)) self.spxw = option.symbol self.bb = self.bb(index, 10, 2, resolution=Resolution.DAILY) self.warm_up_indicator(index, self.bb) self.log(f"time_zone: {self.time_zone}") self.time_logged = None self.last_date = None self.last_answer = False def is_last_trading_day_of_week(self, date: Union[datetime, str]) -> bool: date = datetime.strptime(date, '%Y-%m-%d') if isinstance(date, str) else date if self.last_date and self.last_date == date.date(): return self.last_answer self.last_date = date.date() nyse = mcal.get_calendar('NYSE') # Define the start and end of the week start_of_week = date - timedelta(days=date.weekday()) end_of_week = start_of_week + timedelta(days=4) # Get the NYSE schedule for the week week_schedule = nyse.schedule(start_date=start_of_week.strftime('%Y-%m-%d'), end_date=end_of_week.strftime('%Y-%m-%d')) week_dates = week_schedule.index.strftime('%Y-%m-%d') last_trading_day = week_dates[-1] if week_schedule.shape[0] > 0 else None self.last_answer = date.strftime('%Y-%m-%d') == last_trading_day return self.last_answer def next_trading_day_of_week(self, date: Union[datetime, str]) -> bool: date = datetime.strptime(date, '%Y-%m-%d') if isinstance(date, str) else date nyse = mcal.get_calendar('NYSE') # Define the start and end of the week start_of_next_week = date + timedelta(days=7) - timedelta(days=date.weekday()) end_of_next_week = start_of_next_week + timedelta(days=4) # Get the NYSE schedule for the week week_schedule = nyse.schedule(start_date=start_of_next_week.strftime('%Y-%m-%d'), end_date=end_of_next_week.strftime('%Y-%m-%d')) week_dates = week_schedule.index.strftime('%Y-%m-%d') last_trading_day = week_dates[-1] if week_schedule.shape[0] > 0 else None return last_trading_day def on_data(self, slice: Slice) -> None: #if self.portfolio.invested: return if not self.is_last_trading_day_of_week(self.Time): #if not self.time_logged or self.time_logged and self.time_logged != self.Time.date(): # self.time_logged = self.Time.date() # #self.log(f"on_data: {self.time_logged} is not a day to trade") return if not (self.Time.hour == 15 and self.Time.minute == 50): return #self.log(f"on_data: {self.Time}") # Get the OptionChain chain = slice.option_chains.get(self.spxw) if not chain: return # Get the closest expiry date expiry = self.next_trading_day_of_week(self.Time) #min([x.expiry for x in chain]) #for x in chain: # if x.right == OptionRight.PUT: # self.log(f"{x}") chain = [x for x in chain if x.expiry.strftime('%Y-%m-%d') == expiry] # Separate the call and put contracts and sort by Strike to find OTM contracts #calls = sorted([x for x in chain if x.right == OptionRight.CALL], key=lambda x: x.strike, reverse=True) puts = sorted([x for x in chain if x.right == OptionRight.PUT], key=lambda x: x.strike) #if len(calls) < 3 or len(puts) < 3: return if len(puts) < 3: return self.log(f"on_data: processing option {puts[3]}, Underlying: {puts[3].UnderlyingLastPrice} Next expiration date {self.next_trading_day_of_week(self.Time)}") self.MarketOrder(puts[3].symbol, -1) # Create combo order legs ''' price = self.bb.price.current.value quantity = 1 if price > self.bb.upper_band.current.value or price < self.bb.lower_band.current.value: quantity = -1 legs = [ Leg.create(calls[0].symbol, quantity), Leg.create(puts[0].symbol, quantity) ] self.log(f"on_data: order {calls[0]}") self.log(f" {puts[0]}") self.log(f" {calls[2]}") self.log(f" {puts[2]}") #self.log(f" {*legs[1]}") #self.log(f" {*legs[2]}") #self.log(f" {*legs[3]}") self.combo_market_order(legs, 10, asynchronous=True) '''